Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Electron Agric ; 217: None, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343602

RESUMO

Experimental citizen science offers new ways to organize on-farm testing of crop varieties and other agronomic options. Its implementation at scale requires software that streamlines the process of experimental design, data collection and analysis, so that different organizations can support trials. This article considers ClimMob software developed to facilitate implementing experimental citizen science in agriculture. We describe the software design process, including our initial design choices, the architecture and functionality of ClimMob, and the methodology used for incorporating user feedback. Initial design choices were guided by the need to shape a workflow that is feasible for farmers and relevant for farmers, breeders and other decision-makers. Workflow and software concepts were developed concurrently. The resulting approach supported by ClimMob is triadic comparisons of technology options (tricot), which allows farmers to make simple comparisons between crop varieties or other agricultural technologies tested on farms. The software was built using Component-Based Software Engineering (CBSE), to allow for a flexible, modular design of software that is easy to maintain. Source is open-source and built on existing components that generally have a broad user community, to ensure their continuity in the future. Key components include Open Data Kit, ODK Tools, PyUtilib Component Architecture. The design of experiments and data analysis is done through R packages, which are all available on CRAN. Constant user feedback and short communication lines between the development teams and users was crucial in the development process. Development will continue to further improve user experience, expand data collection methods and media channels, ensure integration with other systems, and to further improve the support for data-driven decision-making.

2.
Agron Sustain Dev ; 44(1): 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282889

RESUMO

Matching crop varieties to their target use context and user preferences is a challenge faced by many plant breeding programs serving smallholder agriculture. Numerous participatory approaches proposed by CGIAR and other research teams over the last four decades have attempted to capture farmers' priorities/preferences and crop variety field performance in representative growing environments through experimental trials with higher external validity. Yet none have overcome the challenges of scalability, data validity and reliability, and difficulties in capturing socio-economic and environmental heterogeneity. Building on the strengths of these attempts, we developed a new data-generation approach, called triadic comparison of technology options (tricot). Tricot is a decentralized experimental approach supported by crowdsourced citizen science. In this article, we review the development, validation, and evolution of the tricot approach, through our own research results and reviewing the literature in which tricot approaches have been successfully applied. The first results indicated that tricot-aggregated farmer-led assessments contained information with adequate validity and that reliability could be achieved with a large sample. Costs were lower than current participatory approaches. Scaling the tricot approach into a large on-farm testing network successfully registered specific climatic effects of crop variety performance in representative growing environments. Tricot's recent application in plant breeding networks in relation to decision-making has (i) advanced plant breeding lines recognizing socio-economic heterogeneity, and (ii) identified consumers' preferences and market demands, generating alternative breeding design priorities. We review lessons learned from tricot applications that have enabled a large scaling effort, which should lead to stronger decision-making in crop improvement and increased use of improved varieties in smallholder agriculture.

3.
Proc Natl Acad Sci U S A ; 116(10): 4194-4199, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782795

RESUMO

Crop adaptation to climate change requires accelerated crop variety introduction accompanied by recommendations to help farmers match the best variety with their field contexts. Existing approaches to generate these recommendations lack scalability and predictivity in marginal production environments. We tested if crowdsourced citizen science can address this challenge, producing empirical data across geographic space that, in aggregate, can characterize varietal climatic responses. We present the results of 12,409 farmer-managed experimental plots of common bean (Phaseolus vulgaris L.) in Nicaragua, durum wheat (Triticum durum Desf.) in Ethiopia, and bread wheat (Triticum aestivum L.) in India. Farmers collaborated as citizen scientists, each ranking the performance of three varieties randomly assigned from a larger set. We show that the approach can register known specific effects of climate variation on varietal performance. The prediction of variety performance from seasonal climatic variables was generalizable across growing seasons. We show that these analyses can improve variety recommendations in four aspects: reduction of climate bias, incorporation of seasonal climate forecasts, risk analysis, and geographic extrapolation. Variety recommendations derived from the citizen science trials led to important differences with previous recommendations.


Assuntos
Aclimatação , Mudança Climática , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA