Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Biother Radiopharm ; 33(6): 213-220, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30036073

RESUMO

BACKGROUND: Hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) systems have been taken in use as new clinical diagnostic tools including detection and therapy planning of cancer. To reduce the amount of contrast agents injected in patients while fully benefitting both modalities, dual-modality probes are required. MATERIAL AND METHODS: This study was first aimed at developing a hybrid PET-MRI probe by labeling superparamagnetic iron oxide nanoparticles (SPIONs) with 64Cu using a fast and chelator-free conjugation method, and second, to demonstrate the ability of the agent to target sentinel lymph nodes (SLNs) in vivo using simultaneous PET-MRI imaging. RESULTS: High labeling efficiency of 97% produced within 10-15 min was demonstrated at room temperature. 64Cu-SPIONs were chemically stable in mouse serum for 24 h and after intradermal injection in the hind paw of C57BL/6J mice, demonstrated specific accumulation in the SLN. Simultaneous PET-MRI clearly demonstrated visualization of 64Cu-SPIONs, in dynamic and static imaging sequences up to 24 h after administration. CONCLUSION: The use of a single hybrid probe and simultaneous hybrid imaging provides an efficient, complementary integration of quantitation and is expected to improve preoperative planning and intraoperative guidance of cancer treatments.


Assuntos
Meios de Contraste/administração & dosagem , Vasos Linfáticos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Meios de Contraste/química , Meios de Contraste/farmacocinética , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Feminino , Processamento de Imagem Assistida por Computador , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Camundongos Endogâmicos C57BL , Traçadores Radioativos , Distribuição Tecidual
2.
Diagnostics (Basel) ; 4(1): 13-26, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26852675

RESUMO

Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with (99m)Tc and an Alexa fluorophore (AF), together forming (99m)Tc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent.

3.
Am J Nucl Med Mol Imaging ; 4(1): 60-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24380046

RESUMO

The aim of this study was to develop (68)Ga-SPIONs for use as a single contrast agent for dynamic, quantitative and high resolution PET/MR imaging of Sentinel Lymph Node (SLN). In addition (68)Ga enables Cherenkov light emission which can be used for optical guidance during resection of SLN. SPIONs were labeled with (68)Ga in ammonium acetate buffer, pH 5.5. The labeling yield and stability in human serum were determined using instant thin layer chromatography. An amount of 0.07-0.1 mL (~5-10 MBq, 0.13 mg Fe) of (68)Ga-SPIONs was subcutaneously injected in the hind paw of rats. The animals were imaged at 0-3 h and 25 h post injection with PET/CT, 9.4 T MR and CCDbased Cherenkov optical systems. A biodistribution study was performed by dissecting and measuring the radioactivity in lymph nodes, kidneys, spleen, liver and the injection site. The labeling yield was 97.3 ± 0.05% after 15 min and the (68)Ga-SPIONs were stable in human serum. PET, MR and Cherenkov luminescence imaging clearly visualized the SLN. Biodistribution confirmed a high uptake of the (68)Ga-SPIONs within the SLN. We conclude that generator produced (68)Ga can be labeled to SPIONs. Subcutaneously injected (68)Ga-SPIONs can enhance the identification of the SLNs by combining sensitive PET and high resolution MR imaging. Clinically, hybrid PET/MR cameras are already in use and (68)Ga-SPIONs have a great potential as a single-dose, tri-modality agent for diagnostic imaging and potential Cherenkov luminescent guided resection of SLN.

4.
J Nucl Med ; 53(3): 459-63, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22323777

RESUMO

UNLABELLED: The purpose of this study was to develop multimodality SPECT/MRI contrast agents for sentinel lymph node (SLN) mapping in vivo. METHODS: Nanoparticles with a solid iron oxide core and a polyethylene glycol coating were labeled with (99m)Tc. The labeling efficiency was determined with instant thin-layer chromatography and magnetic separation. The stability of the radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) was verified in both sterile water and human serum at room temperature 6 and 24 h after labeling. Five Wistar rats were injected subcutaneously in the right hind paw with (99m)Tc-SPIONs (25-50 MBq, ∼0.2 mg of Fe) and sacrificed 4 h after injection. Two animals were imaged with SPECT/MRI. All 5 rats were dissected; the lymph nodes, liver, kidneys, spleen, and hind paw containing the injection site were removed and weighed; and activity in the samples was measured. The microdistribution within the lymph nodes was studied with digital autoradiography. RESULTS: The efficiency of labeling of the SPIONs was 99% 6 h after labeling in both water and human serum. The labeling yield was 98% in water and 97% in human serum 24 h after labeling. The SLN could be identified in vivo with SPECT/MRI. The accumulation of (99m)Tc-SPIONs (as the percentage injected dose/g [%ID/g]) in the SLN was 100 %ID/g, whereas in the liver and spleen it was less than 2 %ID/g. Digital autoradiography images revealed a nonhomogeneous distribution of (99m)Tc-SPIONs within the lymph nodes; nanoparticles were found in the cortical, subcapsular, and medullary sinuses. CONCLUSION: This study revealed the feasibility of labeling SPIONs with (99m)Tc. The accumulation of (99m)Tc-SPIONs in lymph nodes after subcutaneous injection in animals, verified by SPECT/MRI, is encouraging for applications in breast cancer and malignant melanoma.


Assuntos
Compostos Férricos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanopartículas , Compostos Radiofarmacêuticos , Biópsia de Linfonodo Sentinela/métodos , Tecnécio , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Cromatografia em Camada Fina , Meios de Contraste , Compostos Férricos/farmacocinética , Processamento de Imagem Assistida por Computador , Magnetismo , Masculino , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Veículos Farmacêuticos , Polietilenoglicóis , Controle de Qualidade , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Tecnécio/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA