Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Transl Med ; 14(666): eabm6391, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223446

RESUMO

The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.


Assuntos
Leucemia Mieloide Aguda , Nicho de Células-Tronco , Animais , Osso e Ossos , Modelos Animais de Doenças , Hematopoese , Humanos , Camundongos , Reprodutibilidade dos Testes , Microambiente Tumoral
2.
Adv Healthc Mater ; 11(1): e2100684, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34734500

RESUMO

Metastatic cancer spread is responsible for most cancer-related deaths. To colonize a new organ, invading cells adapt to, and remodel, the local extracellular matrix (ECM), a network of proteins and proteoglycans underpinning all tissues, and a critical regulator of homeostasis and disease. However, there is a major lack in tools to study cancer cell behavior within native 3D ECM. Here, an in-house designed bioreactor, where mouse organ ECM scaffolds are perfused and populated with cells that are challenged to colonize it, is presented. Using a specialized bioreactor chamber, it is possible to monitor cell behavior microscopically (e.g., proliferation, migration) within the organ scaffold. Cancer cells in this system recapitulate cell signaling observed in vivo and remodel complex native ECM. Moreover, the bioreactors are compatible with co-culturing cell types of different genetic origin comprising the normal and tumor microenvironment. This degree of experimental flexibility in an organ-specific and 3D context, opens new possibilities to study cell-cell and cell-ECM interplay and to model diseases in a controllable organ-specific system ex vivo.


Assuntos
Matriz Extracelular , Alicerces Teciduais , Animais , Reatores Biológicos , Camundongos , Perfusão , Proteoglicanas , Engenharia Tecidual
3.
Nat Cell Biol ; 23(7): 758-770, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34226698

RESUMO

The YAP/TAZ transcriptional programme is not only a well-established driver of cancer progression and metastasis but also an important stimulator of tissue regeneration. Here we identified Cerebral cavernous malformations 3 (CCM3) as a regulator of mechanical cue-driven YAP/TAZ signalling, controlling both tumour progression and stem cell differentiation. We demonstrate that CCM3 localizes to focal adhesion sites in cancer-associated fibroblasts, where it regulates mechanotransduction and YAP/TAZ activation. Mechanistically, CCM3 and focal adhesion kinase (FAK) mutually compete for binding to paxillin to fine-tune FAK/Src/paxillin-driven mechanotransduction and YAP/TAZ activation. In mouse models of breast cancer, specific loss of CCM3 in cancer-associated fibroblasts leads to exacerbated tissue remodelling and force transmission to the matrix, resulting in reciprocal YAP/TAZ activation in the neighbouring tumour cells and dissemination of metastasis to distant organs. Similarly, CCM3 regulates the differentiation of mesenchymal stromal/stem cells. In conclusion, CCM3 is a gatekeeper in focal adhesions that controls mechanotransduction and YAP/TAZ signalling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Adesões Focais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/genética , Adesões Focais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Paxilina/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Estresse Mecânico , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Quinases da Família src/metabolismo
4.
J Vis Exp ; (171)2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34125099

RESUMO

We present here a decellularization protocol for mouse heart and lungs. It produces structural ECM scaffolds that can be used to analyze ECM topology and composition. It is based on a microsurgical procedure designed to catheterize the trachea and aorta of a euthanized mouse to perfuse the heart and lungs with decellularizing agents. The decellularized cardiopulmonary complex can subsequently be immunostained to reveal the location of structural ECM proteins. The whole procedure can be completed in 4 days. The ECM scaffolds resulting from this protocol are free of dimensional distortions. The absence of cells enables structural examination of ECM structures down to submicron resolution in 3D. This protocol can be applied to healthy and diseased tissue from mice as young as 4-weeks old, including mouse models of fibrosis and cancer, opening the way to determine ECM remodeling associated with cardiopulmonary disease.


Assuntos
Coração , Pulmão , Animais , Matriz Extracelular , Camundongos , Engenharia Tecidual , Alicerces Teciduais
5.
Cancer Cell ; 39(4): 451-453, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711271

RESUMO

Clinical implementation of anti-stromal therapies in pancreatic cancer has been delayed by unanticipated tumor-restraining properties of the desmoplastic stroma. In confronting these challenges, Chen et al. demonstrate in this issue of Cancer Cell that fibroblast-specific deletion of collagen I, in the background of oncogenic Kras-induced spontaneous murine pancreatic ductal adenocarcinoma, enhances immune suppression and accelerates progression of disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Colágeno , Fibroblastos , Camundongos , Ductos Pancreáticos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
6.
Nat Mater ; 20(6): 892-903, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495631

RESUMO

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Assuntos
Membrana Basal/metabolismo , Fenômenos Mecânicos , Metástase Neoplásica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Netrinas/metabolismo
7.
Cancer Rep (Hoboken) ; 3(1): e1209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32671954

RESUMO

BACKGROUND: The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM: The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS: Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS: The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.


Assuntos
Técnicas de Cocultura/métodos , Desenvolvimento de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Animais , Fibroblastos Associados a Câncer/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Invasividade Neoplásica , Ratos
8.
Front Cell Dev Biol ; 8: 146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258031

RESUMO

The STRIPAK complex has been linked to a variety of biological processes taking place during embryogenesis and development, but its role in cancer has only just started to be defined. Here, we expand on previous work indicating a role for the scaffolding protein STRIP1 in cancer cell migration and metastasis. We show that cell cycle arrest and decreased proliferation are seen upon loss of STRIP1 in MDA-MB-231 cells due to the induction of cyclin dependent kinase inhibitors, including p21 and p27. We demonstrate that p21 and p27 induction is observed in a subpopulation of cells having low DNA damage response and that the p21high/γH2AXlow ratio within single cells can be rescued by depleting MST3&4 kinases. While the loss of STRIP1 decreases cell proliferation and tumor growth, cells treated with low dosage of chemotherapeutics in vitro paradoxically escape therapy-induced senescence and begin to proliferate after recovery. This corroborates with already known research on the dual role of p21 and indicates that STRIP1 also plays a contradictory role in breast cancer, suppressing tumor growth, but once treated with chemotherapeutics, allowing for possible recurrence and decreased patient survival.

10.
Nat Protoc ; 14(12): 3395-3425, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31705125

RESUMO

The extracellular matrix (ECM) is a major regulator of homeostasis and disease, yet the 3D structure of the ECM remains poorly understood because of limitations in ECM visualization. We recently developed an ECM-specialized method termed in situ decellularization of tissues (ISDoT) to isolate native 3D ECM scaffolds from whole organs in which ECM structure and composition are preserved. Here, we present detailed surgical instructions to facilitate decellularization of 33 different mouse tissues and details of validated antibodies that enable the visualization of 35 mouse ECM proteins. Through mapping of these ECM proteins, the structure of the ECM can be determined and tissue structures visualized in detail. In this study, perfusion decellularization is presented for bones, skeletal muscle, tongue, salivary glands, stomach, duodenum, jejunum/ileum, large intestines, mesentery, liver, gallbladder, pancreas, trachea, bronchi, lungs, kidneys, urinary bladder, ovaries, uterine horn, cervix, adrenal gland, heart, arteries, veins, capillaries, lymph nodes, spleen, peripheral nerves, eye, outer ear, mammary glands, skin, and subcutaneous tissue. Decellularization, immunostaining, and imaging take 4-5 d.


Assuntos
Matriz Extracelular/metabolismo , Imageamento Tridimensional/métodos , Coloração e Rotulagem/métodos , Animais , Anticorpos/metabolismo , Matriz Extracelular/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Perfusão/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
11.
Nat Commun ; 9(1): 5150, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514914

RESUMO

Cancer-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, although their origin and roles in shaping disease initiation, progression and treatment response remain unclear due to significant heterogeneity. Here, following a negative selection strategy combined with single-cell RNA sequencing of 768 transcriptomes of mesenchymal cells from a genetically engineered mouse model of breast cancer, we define three distinct subpopulations of CAFs. Validation at the transcriptional and protein level in several experimental models of cancer and human tumors reveal spatial separation of the CAF subclasses attributable to different origins, including the peri-vascular niche, the mammary fat pad and the transformed epithelium. Gene profiles for each CAF subtype correlate to distinctive functional programs and hold independent prognostic capability in clinical cohorts by association to metastatic disease. In conclusion, the improved resolution of the widely defined CAF population opens the possibility for biomarker-driven development of drugs for precision targeting of CAFs.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer , Análise de Sequência de RNA , Transcriptoma , Tecido Adiposo/metabolismo , Animais , Biomarcadores Tumorais/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/classificação , Ciclo Celular/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Progressão da Doença , Epitélio/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Junções Intercelulares/genética , Modelos Logísticos , Camundongos , Camundongos Transgênicos , Prognóstico , Fatores de Transcrição/genética , Transcriptoma/genética
12.
Mol Biol Cell ; 29(20): 2378-2385, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091653

RESUMO

Increased tissue stiffness is a classic characteristic of solid tumors. One of the major contributing factors is increased density of collagen fibers in the extracellular matrix (ECM). Here, we investigate how cancer cells biomechanically interact with and respond to the stiffness of the ECM. Probing the adaptability of cancer cells to altered ECM stiffness using optical tweezers-based microrheology and deformability cytometry, we find that only malignant cancer cells have the ability to adjust to collagen matrices of different densities. Employing microrheology on the biologically relevant spheroid invasion assay, we can furthermore demonstrate that, even within a cluster of cells of similar origin, there are differences in the intracellular biomechanical properties dependent on the cells' invasive behavior. We reveal a consistent increase of viscosity in cancer cells leading the invasion into the collagen matrices in comparison with cancer cells following in the stalk or remaining in the center of the spheroid. We hypothesize that this differential viscoelasticity might facilitate spheroid tip invasion through a dense matrix. These findings highlight the importance of the biomechanical interplay between cells and their microenvironment for tumor progression.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/patologia , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Elasticidade , Humanos , Camundongos , Invasividade Neoplásica , Ratos , Reologia , Viscosidade
13.
Bio Protoc ; 8(6): e2776, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34179290

RESUMO

Mesenchymal stem cells (MSCs) have shown profound therapeutic potential in tissue repair and regeneration. However, recent studies indicate that MSCs are largely entrapped in lungs after intravenous delivery and die shortly. The underlying mechanisms have been poorly understood. We have provided evidence to show that excess expression and activation of integrins in culture-expanded MSCs is a critical cause of MSCs adhesion to endothelial cells of the lung microarteries resulting in the entrapment of the cells ( Wang et al., 2015 ). Therefore, it may be meaningful to test the adhesive ability of MSCs to endothelial cells in vitro before intravenous administration to avoid their lung vascular obstructions. Here we report a simple method to measure MSCs attachment to endothelial cells.

14.
Cell Stem Cell ; 22(1): 35-49.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249464

RESUMO

Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reprogramação Celular , Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fosfoproteínas/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Feto/metabolismo , Humanos , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional/genética , Proteínas de Sinalização YAP
15.
Nat Med ; 23(7): 890-898, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604702

RESUMO

The extracellular matrix (ECM) is a master regulator of cellular phenotype and behavior. It has a crucial role in both normal tissue homeostasis and disease pathology. Here we present a fast and efficient approach to enhance the study of ECM composition and structure. Termed in situ decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM. Our method is superior to other methods tested in its ability to preserve the structural integrity of the ECM, facilitate high-resolution imaging and quantitatively detect ECM proteins. In particular, we performed high-resolution sub-micron imaging of matrix topography in normal tissue and over the course of primary tumor development and progression to metastasis in mice, providing the first detailed imaging of the metastatic niche. These data show that cancer-driven ECM remodeling is organ specific, and that it is accompanied by comprehensive changes in ECM composition and topological structure. We also describe differing patterns of basement-membrane organization surrounding different types of blood vessels in healthy and diseased tissues. The ISDoT procedure allows for the study of native ECM structure under normal and pathological conditions in unprecedented detail.


Assuntos
Membrana Basal/ultraestrutura , Neoplasias da Mama/ultraestrutura , Matriz Extracelular/ultraestrutura , Neoplasias Mamárias Experimentais/ultraestrutura , Proteômica , Microambiente Tumoral , Animais , Membrana Basal/metabolismo , Neoplasias da Mama/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Imageamento Tridimensional , Lactação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/ultraestrutura , Linfonodos/metabolismo , Linfonodos/ultraestrutura , Metástase Linfática , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/ultraestrutura , Neoplasias Mamárias Experimentais/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/ultraestrutura , Camundongos , Imagem Óptica , Nervos Periféricos/metabolismo , Nervos Periféricos/ultraestrutura , Neoplasias da Língua/metabolismo , Neoplasias da Língua/ultraestrutura
16.
Bio Protoc ; 7(1): e2101, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458430

RESUMO

Hydrogel systems composed of purified extracellular matrix (ECM) components (such as collagen, fibrin, Matrigel, and methylcellulose) are a mainstay of cell and molecular biology research. They are used extensively in many applications including tissue regeneration platforms, studying organ development, and pathological disease models such as cancer. Both the biochemical and biomechanical properties influence cellular and tissue compatibility, and these properties are altered in pathological disease progression (Cox and Erler, 2011; Bonnans et al., 2014 ). The use of cell-embedded hydrogels in disease models such as cancer, allow the interrogation of cell-induced changes in the biomechanics of the microenvironment ( Madsen et al., 2015 ). Here we report a simple method to measure these cell-induced changes in vitro using a controlled strain rotational rheometer.

17.
Bio Protoc ; 7(9): e2265, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541251

RESUMO

The microenvironment of solid tumours is a critical contributor to the progression of tumours and offers a promising target for therapeutic intervention (Cox and Erler, 2011; Barker et al., 2012 ; Cox et al., 2016; Cox and Erler, 2016). The properties of the tumour microenvironment vary significantly from that of the original tissue in both biochemistry and biomechanics. At present, the complex interplay between the biomechanical properties of the microenvironment and tumour cell phenotype is under intense investigation. The ability to measure the biomechanical properties of tumour samples from cancer models will increase our understanding of their importance in solid tumour biology. Here we report a simple method to measure the viscoelastic properties of tumour specimens using a controlled strain rotational rheometer.

18.
EMBO Rep ; 16(10): 1394-408, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323721

RESUMO

Cancer-associated fibroblasts (CAFs) interact with tumour cells and promote growth and metastasis. Here, we show that CAF activation is reversible: chronic hypoxia deactivates CAFs, resulting in the loss of contractile force, reduced remodelling of the surrounding extracellular matrix and, ultimately, impaired CAF-mediated cancer cell invasion. Hypoxia inhibits prolyl hydroxylase domain protein 2 (PHD2), leading to hypoxia-inducible factor (HIF)-1α stabilisation, reduced expression of αSMA and periostin, and reduced myosin II activity. Loss of PHD2 in CAFs phenocopies the effects of hypoxia, which can be prevented by simultaneous depletion of HIF-1α. Treatment with the PHD inhibitor DMOG in an orthotopic breast cancer model significantly decreases spontaneous metastases to the lungs and liver, associated with decreased tumour stiffness and fibroblast activation. PHD2 depletion in CAFs co-injected with tumour cells similarly prevents CAF-induced metastasis to lungs and liver. Our data argue that reversion of CAFs towards a less active state is possible and could have important clinical implications.


Assuntos
Hipóxia Celular , Fibroblastos/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica , Células Estromais/fisiologia , Aminoácidos Dicarboxílicos/farmacologia , Animais , Mama/citologia , Moléculas de Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Miosina Tipo II/metabolismo , Invasividade Neoplásica , Técnicas de Cultura de Órgãos , Células Tumorais Cultivadas
19.
Nat Cell Biol ; 17(1): 68-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25531779

RESUMO

The contractile actomyosin cytoskeleton and its connection to the plasma membrane are critical for control of cell shape and migration. We identify three STRIPAK complex components, FAM40A, FAM40B and STRN3, as regulators of the actomyosin cortex. We show that FAM40A negatively regulates the MST3 and MST4 kinases, which promote the co-localization of the contractile actomyosin machinery with the Ezrin/Radixin/Moesin family proteins by phosphorylating the inhibitors of PPP1CB, PPP1R14A-D. Using computational modelling, in vitro cell migration assays and in vivo breast cancer metastasis assays we demonstrate that co-localization of contractile activity and actin-plasma membrane linkage reduces cell speed on planar surfaces, but favours migration in confined environments similar to those observed in vivo. We further show that FAM40B mutations found in human tumours uncouple it from PP2A and enable it to drive a contractile phenotype, which may underlie its role in human cancer.


Assuntos
Autoantígenos/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Autoantígenos/genética , Neoplasias da Mama/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Biologia Computacional , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares , Metástase Neoplásica , Proteínas de Ligação a Fosfato , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Quinases Associadas a rho/metabolismo
20.
EMBO J ; 33(21): 2458-72, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25168639

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure-function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin-matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch.


Assuntos
Integrinas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/fisiologia , Vitronectina/metabolismo , Adesão Celular/fisiologia , Células HEK293 , Humanos , Integrinas/genética , Mutação , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Vitronectina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA