Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7987): 601-607, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853129

RESUMO

Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids1. In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity2,3. Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units4. We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes5. Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications6.


Assuntos
Bactérias , Bacteriófagos , Sistemas CRISPR-Cas , Mimetismo Molecular , RNA Viral , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Biotecnologia/métodos , Biotecnologia/tendências , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Plasmídeos/genética , Prófagos/genética , Prófagos/imunologia , RNA Viral/genética
2.
Appl Environ Microbiol ; 89(2): e0174122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656007

RESUMO

Mixed species biofilms exhibit increased tolerance to numerous stresses compared to single species biofilms. The aim of this study was to examine the effect of grazing by the heterotrophic protist, Tetrahymena pyriformis, on a mixed species biofilm consisting of Pseudomonas aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Protozoan grazing significantly reduced the single species K. pneumoniae biofilm, and the single species P. protegens biofilm was also sensitive to grazing. In contrast, P. aeruginosa biofilms were resistant to predation. This resistance protected the otherwise sensitive members of the mixed species biofilm consortium. Rhamnolipids produced by P. aeruginosa were shown to be the primary toxic factor for T. pyriformis. However, a rhamnolipid-deficient mutant of P. aeruginosa (P. aeruginosa ΔrhlAB) maintained grazing resistance in the biofilm, suggesting the presence of at least one additional protective mechanism. P. aeruginosa with a deleted gene encoding the type III secretion system also resisted grazing. A transposon library was generated in the ΔrhlAB mutant to identify the additional factor involved in community biofilm protection. Results indicated that the Pseudomonas Quinolone Signal (PQS), a quorum sensing signaling molecule, was likely responsible for this effect. We confirmed this observation by showing that double mutants of ΔrhlAB and genes in the PQS biosynthetic operon lost grazing protection. We also showed that PQS was directly toxic to T. pyriformis. This study demonstrates that residing in a mixed species biofilm can be an advantageous strategy for grazing sensitive bacterial species, as P. aeruginosa confers community protection from protozoan grazing through multiple mechanisms. IMPORTANCE Biofilms have been shown to protect bacterial cells from predation by protists. Biofilm studies have traditionally used single species systems, which have provided information on the mechanisms and regulation of biofilm formation and dispersal, and the effects of predation on these biofilms. However, biofilms in nature are comprised of multiple species. To better understand how multispecies biofilms are impacted by predation, a model mixed-species biofilm was here exposed to protozoan predation. We show that the grazing sensitive strains K. pneumonia and P. protogens gained associational resistance from the grazing resistant P. aeruginosa. Resistance was due to the secretion of rhamnolipids and quorum sensing molecule PQS. This work highlights the importance of using mixed species systems.


Assuntos
Biofilmes , Comportamento Predatório , Animais , Percepção de Quorum , Eucariotos , Pseudomonas aeruginosa/fisiologia
3.
Mol Ecol ; 31(5): 1595-1608, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35014098

RESUMO

Horizontal gene transfer via plasmids is important for the dissemination of antibiotic resistance genes among medically relevant pathogens. Specifically, the transfer of IncHI1A plasmids is believed to facilitate the spread of antibiotic resistance genes, such as carbapenemases, within the clinically important family Enterobacteriaceae. The microbial community of urban wastewater treatment plants has been shown to be highly permissive towards conjugal transfer of IncP1 plasmids. Here, we tracked the transfer of the P1 plasmid pB10 and the clinically relevant HI1A plasmid R27 in the microbial communities present in urban residential sewage entering full-scale wastewater treatment plants. We found that both plasmids readily transferred to these communities and that strains in the sewage were able to further disseminate them. Furthermore, R27 has a broad potential host range, but a low host divergence. Interestingly, although the majority of R27 transfer events were to members of Enterobacteriaceae, we found a subset of transfer events to other families, even other phyla. This indicates that HI1A plasmids facilitate horizontal gene transfer both within Enterobacteriaceae, but also across families of, in particular, Gammaproteobacteria, such as Moraxellaceae, Pseudomonadaceae and Shewanellaceae. pB10 displayed a similar potential host range to R27. In contrast to R27, pB10 had a high host divergence. By culture enrichment of the transconjugant communities, we show that sewage strains of Enterobacteriaceae and Aeromonadaceae can stably maintain R27 and pB10, respectively. Our results suggest that dissemination in the urban residual water system of HI1A plasmids may result in an accelerated acquisition of antibiotic resistance genes among pathogens.


Assuntos
Microbiota , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética , Esgotos/microbiologia
4.
Nucleic Acids Res ; 50(8): 4315-4328, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606604

RESUMO

Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.


Assuntos
Archaea , Sistemas CRISPR-Cas , Archaea/genética , Bactérias/genética , Plasmídeos/genética , Células Procarióticas
5.
ISME J ; 16(4): 997-1003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34759302

RESUMO

Community assembly processes determine patterns of species distribution and abundance which are central to the ecology of microbiomes. When studying plant root microbiome assembly, it is typical to sample at the whole plant root system scale. However, sampling at these relatively large spatial scales may hinder the observability of intermediate processes. To study the relative importance of these processes, we employed millimetre-scale sampling of the cell elongation zone of individual roots. Both the rhizosphere and rhizoplane microbiomes were examined in fibrous and taproot model systems, represented by wheat and faba bean, respectively. Like others, we found that the plant root microbiome assembly is mainly driven by plant selection. However, based on variability between replicate millimetre-scale samples and comparisons with randomized null models, we infer that either priority effects during early root colonization or variable selection among replicate plant roots also determines root microbiome assembly.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/genética , Raízes de Plantas , Rizosfera
6.
NPJ Biofilms Microbiomes ; 6(1): 55, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247129

RESUMO

Staphylococcus aureus is a prominent etiological agent of suppurative abscesses. In principle, abscess formation and purulent exudate are classical physiological features of healing and tissue repair. However, S. aureus deploys two coagulases that can usurp this classical host response and form distinct abscess lesions. Here, we establish that during coinfection with coagulase producers and non-producers, coagulases are shared public goods that contribute to staphylococcal persistence, abscess formation, and disease progression. Coagulase-negative mutants that do not produce the public goods themselves are able to exploit those cooperatively secreted by producers and thereby thrive during coinfection at the expense of others. This study shows the importance of social interactions among pathogens concerning clinical outcomes.


Assuntos
Abscesso/microbiologia , Coagulase/genética , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coagulase/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Humanos , Camundongos , Interações Microbianas , Mutação , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
7.
PLoS One ; 15(1): e0228108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004342

RESUMO

Although organic matter may accumulate sometimes (e.g. lignocellulose in peat bog), most natural biodegradation processes are completed until full mineralization. Such transformations are often achieved by the concerted action of communities of interacting microbes, involving different species each performing specific tasks. These interactions can give rise to novel "community-intrinsic" properties, through e.g. activation of so-called "silent genetic pathways" or synergistic interplay between microbial activities and functions. Here we studied the microbial community-based degradation of keratin, a recalcitrant biological material, by four soil isolates, which have previously been shown to display synergistic interactions during biofilm formation; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. We observed enhanced keratin weight loss in cultures with X. retroflexus, both in dual and four-species co-cultures, as compared to expected keratin degradation by X. retroflexus alone. Additional community intrinsic properties included accelerated keratin degradation rates and increased biofilm formation on keratin particles. Comparison of secretome profiles of X. retroflexus mono-cultures to co-cultures revealed that certain proteases (e.g. serine protease S08) were significantly more abundant in mono-cultures, whereas co-cultures had an increased abundance of proteins related to maintaining the redox environment, e.g. glutathione peroxidase. Hence, one of the mechanisms related to the community intrinsic properties, leading to enhanced degradation from co-cultures, might be related to a switch from sulfitolytic to proteolytic functions between mono- and co-cultures, respectively.


Assuntos
Bactérias/metabolismo , Queratinas/metabolismo , Consórcios Microbianos/fisiologia , Biodegradação Ambiental , Biofilmes , Técnicas de Cocultura , Interações Microbianas , Microbiologia do Solo
8.
Proc Natl Acad Sci U S A ; 115(50): E11771-E11779, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463950

RESUMO

Coagulation is an innate defense mechanism intended to limit blood loss and trap invading pathogens during infection. However, Staphylococcus aureus has the ability to hijack the coagulation cascade and generate clots via secretion of coagulases. Although many S. aureus have this characteristic, some do not. The population dynamics regarding this defining trait have yet to be explored. We report here that coagulases are public goods that confer protection against antimicrobials and immune factors within a local population or community, thus promoting growth and virulence. By utilizing variants of a methicillin-resistant S. aureus we infer that the secretion of coagulases is a cooperative trait, which is subject to exploitation by invading mutants that do not produce the public goods themselves. However, overexploitation, "tragedy of the commons," does not occur at clinically relevant conditions. Our micrographs indicate this is due to spatial segregation and population viscosity. These findings emphasize the critical role of coagulases in a social evolution context and provide a possible explanation as to why the secretion of these public goods is maintained in mixed S. aureus communities.


Assuntos
Coagulase/fisiologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Biofilmes/crescimento & desenvolvimento , Coagulação Sanguínea , Coagulase/genética , Humanos , Microbiota/genética , Microbiota/fisiologia , Modelos Biológicos , Mutação , Infecções Estafilocócicas/sangue , Virulência
9.
ISME J ; 12(11): 2608-2618, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29977009

RESUMO

Microbial communities primarily consist of multiple species that affect one another's fitness both directly and indirectly. This study showed that the cocultivation of Paenibacillus amylolyticus and Xanthomonas retroflexus exhibited facultative mutualistic interactions in a static environment, during the course of which a new adapted phenotypic variant of X. retroflexus appeared. Although the emergence of this variant was not directly linked to the presence of P. amylolyticus, its establishment in the coculture enhanced the productivity of both species due to mutations that stimulated biofilm formation. The mutations were detected in genes encoding a diguanylate cyclase predicted to synthesise cyclic-di-GMP. Examinations of the biofilm formed in cocultures of P. amylolyticus and the new variant of X. retroflexus revealed a distinct spatial organisation: P. amylolyticus only resided in biofilms in association with X. retroflexus and occupied the outer layers. The X. retroflexus variant therefore facilitated increased P. amylolyticus growth as it produced more biofilm biomass. The increase in X. retroflexus biomass was thus not at the expense of P. amylolyticus, demonstrating that interspecies interactions can shape diversification in a mutualistic coculture and reinforce these interactions, ultimately resulting in enhanced communal performance.


Assuntos
Biofilmes/crescimento & desenvolvimento , Paenibacillus/fisiologia , Simbiose , Xanthomonas/fisiologia , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Proteínas de Escherichia coli/genética , Paenibacillus/genética , Fenótipo , Fósforo-Oxigênio Liases/genética , Xanthomonas/genética
10.
ISME J ; 12(9): 2330-2334, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899518

RESUMO

The second messenger cyclic diguanylate (c-di-GMP) is ubiquitously used by bacteria to modulate and shift between different phenotypes including motility, biofilm formation and virulence. Here we show that c-di-GMP-associated genes are widespread on plasmids and that enzymes that synthesize or degrade c-di-GMP are preferentially encoded on transmissible plasmids. Additionally, expression of enzymes that synthesize c-di-GMP was found to increase both biofilm formation and, interestingly, conjugative plasmid transfer rates.


Assuntos
Bactérias/genética , GMP Cíclico/análogos & derivados , Transferência Genética Horizontal , Bactérias/enzimologia , Bactérias/metabolismo , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Plasmídeos/genética , Transdução de Sinais , Virulência
11.
ISME J ; 12(8): 1940-1951, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29670216

RESUMO

Microorganisms frequently coexist in complex multispecies communities, where they distribute non-randomly, reflective of the social interactions that occur. It is therefore important to understand how social interactions and local spatial organization influences multispecies biofilm succession. Here the localization of species pairs was analyzed in three dimensions in a reproducible four-species biofilm model, to study the impact of spatial positioning of individual species on the temporal development of the community. We found, that as the biofilms developed, species pairs exhibited distinct intermixing patterns unique to the four-member biofilms. Higher biomass and more intermixing were found in four-species biofilms compared to biofilms with fewer species. Intriguingly, in local regions within the four member biofilms where Microbacterium oxydans was scant, both biomass and intermixing of all species were lowered, compared to regions where M. oxydans was present at typical densities. Our data suggest that Xanthomonas retroflexus and M. oxydans, both low abundant biofilm-members, intermixed continuously during the development of the four-species biofilm, hereby facilitating their own establishment. In turn, this seems to have promoted distinct spatial organization of Stenotrophomonas rhizophila and Paenibacillus amylolyticus enabling enhanced growth of all four species. Here local intermixing of bacteria advanced the temporal development of a multi-species biofilm.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Interações Microbianas , Actinobacteria/fisiologia , Biomassa , Paenibacillus/fisiologia , Stenotrophomonas/fisiologia , Xanthomonas/fisiologia
12.
Proc Natl Acad Sci U S A ; 114(40): 10684-10688, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923945

RESUMO

In the Origin of Species, Charles R. Darwin [Darwin C (1859) On the Origin of Species] proposed that the struggle for existence must be most intense among closely related species by means of their functional similarity. It has been hypothesized that this similarity, which results in resource competition, is the driver of the evolution of antagonism among bacteria. Consequently, antagonism should mostly be prevalent among phylogenetically and metabolically similar species. We tested the hypothesis by screening for antagonism among all possible pairwise interactions between 67 bacterial species from 8 different environments: 2,211 pairs of species and 4,422 interactions. We found a clear association between antagonism and phylogenetic distance, antagonism being most likely among closely related species. We determined two metabolic distances between our strains: one by scoring their growth on various natural carbon sources and the other by creating metabolic networks of predicted genomes. For both metabolic distances, we found that the probability of antagonism increased the more metabolically similar the strains were. Moreover, our results were not compounded by whether the antagonism was between sympatric or allopatric strains. Intriguingly, for each interaction the antagonizing strain was more likely to have a wider metabolic niche than the antagonized strain: that is, larger metabolic networks and growth on more carbon sources. This indicates an association between an antagonistic and a generalist strategy.


Assuntos
Bactérias , Carbono/metabolismo , Evolução Molecular , Genoma Bacteriano , Filogenia , Bactérias/genética , Bactérias/metabolismo
13.
Nanoscale ; 9(37): 14280-14287, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28914951

RESUMO

Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness. In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits, which enables the robust high-speed fabrication. This finding can pave the way for plasmonic meta-surfaces to be implemented in a broader range of applications such as printing, memory, surface enhanced Raman scattering (SERS), biosensors, flexible displays, photovoltaics, security, and product branding.

14.
Environ Microbiol ; 19(7): 2893-2905, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28618083

RESUMO

Microorganisms frequently co-exist in matrix-embedded multispecies biofilms. Within biofilms, interspecies interactions influence the spatial organization of member species, which likely play an important role in shaping the development, structure and function of these communities. Here, a reproducible four-species biofilm, composed of Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus, was established to study the importance of individual species spatial organization during multispecies biofilm development. We found that the growth of species that are poor biofilm formers, M. oxydans and P. amylolyticus, were highly enhanced when residing in the four-species biofilm. Interestingly, the presence of the low-abundant M. oxydans (0.5% of biomass volume) was observed to trigger changes in the composition of the four-species community. The other three species were crucially needed for the successful inclusion of M. oxydans in the four-species biofilm, where X. retroflexus was consistently positioned in the top layer of the mature four-species biofilm. These findings suggest that low abundance key species can significantly impact the spatial organization and hereby stabilize the function and composition of complex microbiomes.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Paenibacillus/crescimento & desenvolvimento , Stenotrophomonas/crescimento & desenvolvimento , Xanthomonas/crescimento & desenvolvimento , Microbiota/fisiologia , Percepção de Quorum/fisiologia
15.
Crit Rev Microbiol ; 43(4): 453-465, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27869519

RESUMO

Medical science is pitted against an ever-increasing rise in antibiotic tolerant microorganisms. Concurrently, during the past decade, biofilms have garnered much attention within research and clinical practice. Although the significance of clinical biofilms is becoming very apparent, current methods for diagnostics and direction of therapy plans in many hospitals do not reflect this knowledge; with many of the present tools proving to be inadequate for accurately mimicking the biofilm phenomenon. Based on current findings, we address some of the fundamental issues overlooked by clinical labs: the paradigm shifts that need to occur in assessing chronic wounds; better simulation of physiological conditions in vitro; and the importance of incorporating polymicrobial populations into biofilm models. In addition, this review considers using a biofilm relevant in vitro model for cultivating and determining the antibiotic tolerance and susceptibility of microorganisms associated with chronic wounds. This model presents itself as a highly rapid and functional tool that can be utilized by hospitals in an aim to improve bedside treatments.


Assuntos
Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Infecção dos Ferimentos/microbiologia , Ferimentos e Lesões/microbiologia , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/microbiologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/patogenicidade , Humanos , Testes de Sensibilidade Microbiana , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia
16.
Front Microbiol ; 7: 1366, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630624

RESUMO

Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result in coordinated regulation of gene expression in the different species present. These communal interactions often lead to emergent properties in biofilms, such as enhanced tolerance against antibiotics, host immune responses, and other stresses, which have been shown to provide benefits to all biofilm members not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells in multispecies communities can be an alternative strategy to reveal the nature of interspecies interactions of constituent species. Closing the gap between visual observation and biological processes may become crucial for resolving biofilm related problems, which is of utmost importance to environmental, industrial, and clinical implications. This review briefly presents the state of the art of studying interspecies interactions and spatial organization of multispecies communities, aiming to support theoretical and practical arguments for further advancement of this field.

17.
Environ Microbiol ; 18(8): 2565-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27119650

RESUMO

Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Interações Microbianas/fisiologia , Bactérias/classificação , Técnicas de Cocultura , Filogenia , Plâncton/crescimento & desenvolvimento , Plâncton/microbiologia
18.
Appl Environ Microbiol ; 81(24): 8414-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431965

RESUMO

As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Interações Microbianas/genética , Polissacarídeos Bacterianos/biossíntese , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fenótipo , Pseudomonas aeruginosa/genética
19.
ISME J ; 9(1): 81-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24936766

RESUMO

Biofilms that form on roots, litter and soil particles typically contain multiple bacterial species. Currently, little is known about multispecies biofilm interactions and few studies have been based on environmental isolates. Here, the prevalence of synergistic effects in biofilm formation among seven different soil isolates, cocultured in combinations of four species, was investigated. We observed greater biofilm biomass production in 63% of the four-species culture combinations tested than in biofilm formed by single-species cultures, demonstrating a high prevalence of synergism in multispecies biofilm formation. One four-species consortium, composed of Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus, exhibited strong synergy in biofilm formation and was selected for further study. Of the four strains, X. retroflexus was the only one capable of forming abundant biofilm in isolation, under the in vitro conditions investigated. In accordance, strain-specific quantitative PCR revealed that X. retroflexus was predominant within the four-species consortium (>97% of total biofilm cell number). Despite low relative abundance of all the remaining strains, all were indispensable for the strong synergistic effect to occur within the four-species biofilm. Moreover, absolute individual strain cell numbers were significantly enhanced when compared with those of single-species biofilms, indicating that all the individual strains benefit from inclusion in the multispecies community. Our results show a high prevalence of synergy in biofilm formation in multispecies consortia isolated from a natural bacterial habitat and suggest that interspecific cooperation occurs.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Consórcios Microbianos , Microbiologia do Solo , Bactérias/isolamento & purificação , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA