Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Sci Rep ; 14(1): 21815, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294189

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected or isolated from domestic cats. It is unclear whether cats play an important role in the SARS-CoV-2 transmission cycle. In this study, we examined the susceptibility of cats to SARS-CoV-2, including wild type and variants, by animal experiments. Cats inoculated with wild type, gamma, and delta variants secreted a large amount of SARS-CoV-2 for 1 week after the inoculation from nasal, oropharyngeal, and rectal routes. Only 100 TCID50 of virus could infect cats and replicate well without severe clinical symptoms. In addition, one cat inoculated with wild type showed persistent virus secretion in feces for over 28 days post-inoculation (dpi). The titer of virus-neutralizing (VN) antibodies against SARS-CoV-2 increased from 11 dpi, reaching a peak at 14 dpi. However, the omicron variant could not replicate well in cat tissues and induced a lower titer of VN antibodies. It is concluded that cats were highly susceptible to SARS-CoV-2 infection, but not to the Omicron Variant, which caused the attenuated pathogenicity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Gatos , Animais , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/veterinária , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Doenças do Gato/virologia , Fezes/virologia , Feminino
2.
Antiviral Res ; 230: 105992, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181215

RESUMO

Given the worldwide risk for the outbreak of emerging/re-emerging respiratory viruses, establishment of new antiviral strategies is greatly demanded. In this study, we present a scheme to identify gapmer antisense oligonucleotides (ASOs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA that efficiently inhibit viral replication. We synthesized approximately 300 gapmer ASOs designed to target various SARS-CoV-2 RNA regions and evaluated their activity in cell-based assays. Through a multistep screening in cell culture systems, we identified that ASO#41, targeting the coding region for viral main protease, reduced SARS-CoV-2 RNA levels in infected cells and inhibited virus-induced cytopathic effects. Antiviral effect of ASO#41 was also observed in iPS cell-derived human lung organoids. ASO#41 depleted intracellular viral RNAs during genome replication in an endogenous RNaseH-dependent manner. ASO#41 showed a wide range of antiviral activity against SARS-CoV-2 variants of concern including Alpha, Delta, and Omicron. Intranasal administration to mice exhibited intracellular accumulation of ASO#41 in the lung and significantly reduced the viral infectious titer, with milder body weight loss due to SARS-CoV-2 infection. Further chemical modification with phosphoryl guanidine-containing backbone linkages provided an elevation of anti-SARS-CoV-2 activity, with 23.4 nM of 50% antiviral inhibitory concentration, one of the strongest anti-SARS-CoV-2 ASOs reported so far. Our study presents an approach to identify active ASOs against SARS-CoV-2, which is potentially useful for establishing an antiviral strategy by targeting genome RNA of respiratory viruses.


Assuntos
Antivirais , Oligonucleotídeos Antissenso , RNA Viral , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Animais , Antivirais/farmacologia , RNA Viral/genética , Replicação Viral/efeitos dos fármacos , Humanos , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Chlorocebus aethiops , Células Vero , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Feminino
3.
Antiviral Res ; 229: 105977, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39089332

RESUMO

Rabies is a fatal neurological disorder caused by rabies virus (RABV) infection. Approximately 60,000 patients die from rabies annually, and there are no effective treatments for this disease. Nucleoside analogs are employed as antiviral drugs based on their broad antiviral spectrum, and certain nucleoside analogs have been reported to exhibit anti-RABV activity. The nucleoside analog ß-d-N4-hydroxycytidine (NHC) has antiviral effects against a range of RNA viruses. Molnupiravir (MPV), a prodrug of NHC, is clinically used as an oral antiviral drug for coronavirus infections. Despite its broad-spectrum activity, the antiviral activity of NHC against RABV remains unclear. In this study, we reveal that NHC exhibits comparable in vitro anti-RABV activity as ribavirin and favipiravir (also known as T-705) with a 90% effective concentration of 6 µM in mouse neuroblastoma cells. NHC reduced viral loads in neuronal and nonneuronal cells in a dose-dependent manner. Both laboratory and field RABVs (fixed and street strains, respectively) were susceptible to NHC. However, no increase in survival or reduction in viral titers in the brain was observed in RABV-infected mice treated prophylactically with MPV. These findings highlight the potential and challenges of NHC in the treatment of RABV infection.


Assuntos
Amidas , Antivirais , Citidina , Vírus da Raiva , Raiva , Carga Viral , Animais , Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Vírus da Raiva/efeitos dos fármacos , Camundongos , Raiva/tratamento farmacológico , Raiva/virologia , Amidas/farmacologia , Carga Viral/efeitos dos fármacos , Pirazinas/farmacologia , Ribavirina/farmacologia , Hidroxilaminas/farmacologia , Linhagem Celular Tumoral , Linhagem Celular
4.
Sci Rep ; 14(1): 18509, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122768

RESUMO

Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.


Assuntos
Vírus da Raiva , Raiva , Genética Reversa , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Animais , Genética Reversa/métodos , Camundongos , Raiva/virologia , Cães , Humanos , Linhagem Celular , Replicação Viral/genética , Filipinas
5.
One Health ; 19: 100870, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39206254

RESUMO

There have been reports of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to various mammalian species. Some infected animals show clinical signs and may even die in rare cases. Outbreaks of SARS-CoV-2 have been reported in zoos where susceptible animals are bred in high population densities. However, there have been few reports of omicron variant outbreaks in zoo animals. From late 2022 to 2023, an outbreak of the SARS-CoV-2 omicron variant occurred in one Japanese zoo. A total of 24 lions were housed in the zoo; 13 of them showed respiratory symptoms, and the three oldest lions died. Molecular and histopathological analyses revealed that the deceased lions were infected with SARS-CoV-2 omicron BF.7.15. Virus-neutralization tests showed that all 21 lions were positive for antibodies against the omicron variant, but not against the delta variant. In addition, three tigers and one bear in the same or neighboring building as the lions possessed antibodies against the omicron variant. This is a very rare report on the outbreak of a SARS-CoV-2 omicron variant infection that resulted in the death of animals. This finding demonstrates the importance of continuous countermeasures to protect non-vaccinated animals from SARS-CoV-2 infection.

6.
Pathogens ; 13(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204299

RESUMO

The green tea catechin epigallocatechin gallate (EGCg) has antimicrobial effects on many bacteria. In this study, we investigated the inhibitory effects of EGCg on Bacillus anthracis spores and vegetative cells. The B. anthracis spores were insensitive to EGCg, but the growth of vegetative cells derived from germinated spores was inhibited by EGCg. Moreover, EGCg decreased the minimum inhibitory concentration of penicillin and meropenem for penicillin-resistant B. anthracis. In the penicillin-resistant B. anthracis strain, the transcription levels of the beta-lactamase genes (bla1 and bla2) decreased significantly following the treatment with 50 µg/mL EGCg. These results suggest that the appropriate application of EGCg may effectively control the penicillin-resistant B. anthracis growth and beta-lactamase production.

7.
Elife ; 132024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120998

RESUMO

Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.


Assuntos
Larva , Metamorfose Biológica , Animais , Metamorfose Biológica/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Perfilação da Expressão Gênica , Bass/genética , Bass/crescimento & desenvolvimento , Bass/metabolismo , Hormônios Tireóideos/metabolismo
8.
Vet Res Commun ; 48(5): 3397-3402, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39066824

RESUMO

Francisella tularensis is an intracellular gram-negative bacterium known as the causative agent of tularemia, which can be transmitted to humans by direct contact with wild animals or by tick bites. Although F. tularensis is highly pathogenic, its recent prevalence in Japan is underreported due to the small number of reported cases. To clarify the current situation of F. tularensis in wild animals, we conducted surveillance on various species of wild animals in Yamaguchi prefecture. In this study, we screened 809 samples collected from 90 Japanese black bears, 105 Japanese monkeys, 168 sika deer, 205 wild boars, and 84 bats. For seroprevalence analysis, we tested 177 serum samples from 75 black bears and 102 monkeys using the microagglutination test. The results showed that serums from five black bears exhibited slight agglutination. Western blot was performed as a confirmatory test on these five samples, but no positive signals were detected. Additionally, molecular surveillance was conducted using DNA extracted from 464 whole blood and 168 tissues, targeting the gene encoding 23 KDa hypothetical protein by real-time PCR and outer membrane protein A gene by conventional PCR. No positive samples of F. tularensis were detected by either real-time or conventional PCR. Although we did not detect any F. tularensis-positive samples through serological and molecular analyses, continuous surveillance studies are necessary since sporadic human cases have been reported in Japan.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Francisella tularensis/isolamento & purificação , Francisella tularensis/imunologia , Japão/epidemiologia , Tularemia/veterinária , Tularemia/epidemiologia , Tularemia/microbiologia , Estudos Soroepidemiológicos , Animais Selvagens/microbiologia , Cervos/microbiologia
9.
In Vitro Cell Dev Biol Anim ; 60(8): 935-948, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38961045

RESUMO

Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.


Assuntos
Arbovírus , Cervos , Animais , Cervos/virologia , Masculino , Células Cultivadas , Filogenia
10.
Jpn J Infect Dis ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085125

RESUMO

The maintenance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among wildlife populations poses a potential risk for the emergence of novel variants. Therefore, monitoring SARS-CoV-2 infection among animals is crucial. As urban rodents live in close proximity to human habitats, there is concern that they may be a potential source of zoonoses. To examine the prevalence of SARS-CoV-2 in rodent populations, we analyzed 128 serum samples and 129 oral swabs collected from 128 brown rats (Rattus norvegicus) and 2 black rats (Rattus rattus) captured for pest control purposes in Tokyo, Japan, between May and December 2023. A virus-neutralizing test using the Omicron variant revealed no evidence of SARS-CoV-2 infection in these populations. Real-time RT-PCR from oral swabs did not detect any SARS-CoV-2 RNA-positive rats. These results indicate the low probability of SARS-CoV-2 circulation among rat populations in Tokyo.

11.
J Anat ; 245(4): 593-624, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38845054

RESUMO

Mudskippers are a group of extant ray-finned fishes with an amphibious lifestyle and serve as exemplars for understanding the evolution of amphibious capabilities in teleosts. A comprehensive anatomical profile of both the soft and hard tissues within their propulsive fins is essential for advancing our understanding of terrestrial locomotor adaptations in fish. Despite the ecological significance of mudskippers, detailed data on their musculoskeletal anatomy remains limited. In the present research, we utilized contrast-enhanced high-resolution microcomputed tomography (µCT) imaging to investigate the barred mudskipper, Periophthalmus argentilineatus. This technique enabled detailed reconstruction and quantification of the morphological details of the pectoral, pelvic, and caudal fins of this terrestrial mudskipper, facilitating comparison with its aquatic relatives. Our findings reveal that P. argentilineatus has undergone complex musculoskeletal adaptations for terrestrial movement, including an increase in muscle complexity and muscle volume, as well as the development of specialized structures like aponeuroses for pectoral fin extension. Skeletal modifications are also evident, with features such as a reinforced shoulder-pelvic joint and thickened fin rays. These evolutionary modifications suggest biomechanically advanced fins capable of overcoming the gravitational challenges of terrestrial habitats, indicating a strong selective advantage for these features in land-based environments. The unique musculoskeletal modifications in the fins of mudskippers like P. argentilineatus, compared with their aquatic counterparts, mark a critical evolutionary shift toward terrestrial adaptations. This study not only sheds light on the specific anatomical changes facilitating this transition but also offers broader insights into the early evolutionary mechanisms of terrestrial locomotion, potentially mirroring the transformative journey from aquatic to terrestrial life in the lineage leading to tetrapods.


Assuntos
Nadadeiras de Animais , Locomoção , Microtomografia por Raio-X , Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Microtomografia por Raio-X/métodos , Locomoção/fisiologia , Imageamento Tridimensional/métodos , Evolução Biológica , Peixes/anatomia & histologia , Peixes/fisiologia
12.
mBio ; 15(7): e0109224, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38847539

RESUMO

Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Células Vero , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Testes de Neutralização , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
13.
J Echocardiogr ; 22(3): 113-151, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38722468

RESUMO

In recent years, bedside ultrasound examinations have been used in many clinical departments and are called point-of-care ultrasound (POCUS). Regarding POCUS in the cardiac field, a protocol called focus (focused) cardiac ultrasound (FoCUS) has been developed in Europe and the United States, is being used clinically, and an educational syllabus has been created. According to them, FoCUS is defined as a point-of-care cardiac ultrasound examination using standardized limited sections and protocols. FoCUS is primarily intended to be performed by non-cardiologists, and in order to avoid making mistakes in judgment, it is important to be familiar with its limitations and it is necessary to understand pathological conditions that can only be diagnosed using conventional comprehensive echocardiography. The Japanese Society of Echocardiography has edited this clinical guideline because we believe that FoCUS should be used effectively and appropriately in Japan, and that appropriate education is essential to popularize FoCUS in Japan. Furthermore, lung POCUS has recently come into clinical use. Lung POCUS is useful for the diagnosis and follow-up of heart failure when used in conjunction with FoCUS, and is especially useful in primary care where chest X-rays are not available. The working group that created this manual agreed that it is desirable to educate patients about lung POCUS in conjunction with FoCUS, so we decided to include the basic techniques of lung POCUS and how to use them in this manuscript.


Assuntos
Ecocardiografia , Sistemas Automatizados de Assistência Junto ao Leito , Sociedades Médicas , Humanos , Ecocardiografia/métodos , Japão , Pulmão/diagnóstico por imagem
14.
Zoolog Sci ; 41(3): 251-256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38809863

RESUMO

The east coast of the Indochinese Peninsula is a well-known transition zone from subtropical to tropical systems, yet only a small number of studies have been conducted on the biogeography and phylogeography of aquatic organisms in this region. The Hau Giang medaka, Oryzias haugiangensis, was originally described from the Mekong Delta in southern Vietnam, and later reported also from southeastern Thailand, west of the Mekong Delta region. However, the species' full geographic range and population genetic structures remain unknown. Field surveys showed a widespread distribution of this species along the east coast of the Indochinese Peninsula, as far as northern Vietnam. A mitochondrial gene phylogeny and population genetic structure analysis using genome-wide single nucleotide polymorphisms revealed that the populations of O. haugiangensis are highly structuralized along the east coast of Vietnam, with the southernmost Mekong Delta population clearly separated from three populations north of central Vietnam. Further field collections are necessary to determine the boundary between the southern and northern populations, and the presence or absence of a hybrid zone.


Assuntos
Distribuição Animal , Oryzias , Animais , Vietnã , Oryzias/genética , Filogenia , Variação Genética , Polimorfismo de Nucleotídeo Único , Genética Populacional
15.
Sci Rep ; 14(1): 12559, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822013

RESUMO

Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine.


Assuntos
Substituição de Aminoácidos , Vacina Antirrábica , Vírus da Raiva , Animais , Células Vero , Chlorocebus aethiops , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Humanos , Raiva/prevenção & controle , Raiva/virologia , Genoma Viral
16.
Viruses ; 16(5)2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38793581

RESUMO

Rabies is a fatal encephalitic infectious disease caused by the rabies virus (RABV). RABV is highly neurotropic and replicates in neuronal cell lines in vitro. The RABV fixed strain, HEP-Flury, was produced via passaging in primary chicken embryonic fibroblast cells. HEP-Flury showed rapid adaptation when propagated in mouse neuroblastoma (MNA) cells. In this study, we compared the growth of our previously constructed recombinant HEP (rHEP) strain-based on the sequence of the HEP (HEP-Flury) strain-with that of the original HEP strain. The original HEP strain exhibited higher titer than rHEP and a single substitution at position 80 in the matrix (M) protein M(D80N) after incubation in MNA cells, which was absent in rHEP. In vivo, intracerebral inoculation of the rHEP-M(D80N) strain with this substitution resulted in enhanced viral growth in the mouse brain and a significant loss of body weight in the adult mice. The number of viral antigen-positive cells in the brains of adult mice inoculated with the rHEP-M(D80N) strain was significantly higher than that with the rHEP strain at 5 days post-inoculation. Our findings demonstrate that a single amino acid substitution in the M protein M(D80N) is associated with neurovirulence in mice owing to adaptation to mouse neuronal cells.


Assuntos
Substituição de Aminoácidos , Vírus da Raiva , Raiva , Proteínas da Matriz Viral , Virulência , Animais , Camundongos , Encéfalo/virologia , Linhagem Celular , Neurônios/virologia , Neurônios/patologia , Raiva/virologia , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Virulência/genética , Replicação Viral
17.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687787

RESUMO

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Assuntos
Cervos , Flavivirus , Metagenômica , Carrapatos , Animais , Metagenômica/métodos , Japão/epidemiologia , Cervos/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Carrapatos/virologia , Filogenia , Viroma/genética , Vírion/genética , Sus scrofa/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Soroepidemiológicos , Genoma Viral
18.
Microbiol Resour Announc ; 13(5): e0126923, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38597639

RESUMO

We report a draft genome sequence of Yersinia pseudotuberculosis isolated from the spleen of a wild rat from Mikura-shima Island, Japan. The bacterium was identified as serotype O:4b using PCR-based O-genotyping. These genomic data provide insights into the pathogenic potential of this strain in spontaneous outbreaks among wild animals.

19.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639795

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/metabolismo , Estudos Soroepidemiológicos , Glicoproteínas/metabolismo , Anticorpos
20.
Commun Biol ; 7(1): 331, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491227

RESUMO

During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.


Assuntos
Bioensaio , Replicação do DNA , Animais , Cricetinae , Feminino , Humanos , Masculino , Animais Geneticamente Modificados , Mesocricetus , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA