Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(4): 104040, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35330687

RESUMO

The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER.

2.
Plant Physiol Biochem ; 142: 211-216, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302410

RESUMO

Choline is a vital metabolite in plant and synthesized from phosphocholine by phosphocholine phosphatase. The Arabidopsis At1g17710 was identified as the first plant gene encoding the phosphatase for both phosphoethanolamine and phosphocholine (PECP) with much higher catalytic efficiency (>10-fold) for former. In betaine accumulating plants, choline is further required for betaine synthesis. In this report, we found three putative PECP genes in sugar beet, betaine accumulating plants. Two genes encode the proteins of 274 amino acid residues and designated as BvPECP1S and BvPECP2S. Another gene encodes the 331 amino acid protein (BvPECP2L) consisted of BvPECP2S with extra C-terminal amino acid. Enzymatic assays of BvPECP1S revealed that BvPECP1S exhibited the phosphatase activity for both phosphoethanolamine and phosphocholine with higher affinity (>1.8-fold) and catalytic efficiency (>2.64-fold) for phosphocholine. BvPECP2L exhibited low activity. RT-PCR experiments for BvPECP1S showed the increased expression in young leaf and root tip under salt-stress whereas the increased expression in all organs under phosphate deficiency. The expression level of BvPECP2L in salt stressed young leaf and root tip was induced by phosphate deficient. Physiological roles of BvPECP1S and BvPECP2L for the betaine synthesis were discussed.


Assuntos
Beta vulgaris/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Beta vulgaris/enzimologia , Beta vulgaris/genética , Beta vulgaris/fisiologia , Colina/metabolismo , Etanolaminas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Monoéster Fosfórico Hidrolases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes , Estresse Salino , Alinhamento de Sequência
3.
Protoplasma ; 256(6): 1727-1736, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31342153

RESUMO

Aminotransferases catalyze the reversible pyridoxal phosphate-dependent transfer of amino groups from amino acids to oxo acids and play important roles for the balance between carbon and nitrogen metabolism. In this report, four aminotransferases (Ap1-Ap4) from a halotolerant cyanobacterium Aphanothece halophytica were examined. The results revealed that Ap1 and Ap2 exhibited the aspartate:2-oxoglutarate aminotransferase (AspAT) activity whereas Ap2 catalyzed further aminotransferase activities with alanine (AlaAT) and LL-diaminopimelate (an intermediate for the synthesis of Lys/peptidoglycan) as amino donors. Ap4 exhibited bifunctional aminotransferase with phosphoserine (PSAT) and glycine (GGAT) as amino donors. No activity was observed for Ap3. We identified third gene encoding phosphoserine phosphatase (PSP) in phosphorylate serine biosynthetic pathway. The levels of mRNA for Ap2 and ApMurE encoding UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase were increased after salt stress. These results suggest the link among photorespiratory metabolite (serine, glycine, glyoxylate), phosphorylate serine biosynthetic pathway and aspartate metabolism via aminotransferases for the synthesis of peptidoglycan and betaine under salt stress conditions.


Assuntos
Ácido Aspártico/metabolismo , Cianobactérias/patogenicidade , Serina/metabolismo , Transaminases/metabolismo
4.
Carbohydr Res ; 339(3): 503-9, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15013387

RESUMO

Cryptococcus flavescens, a strain originally identified as C. laurentii, was isolated from the cerebrospinal fluid of an AIDS patient, and the soluble capsular polysaccharide of the yeast was investigated. Glucuronoxylomannan (GXM) was obtained from C. flavescens under conditions similar to those used to obtain C. neoformans polysaccharide. However, the GXM differed from C. neoformans polysaccharide in the decreased O-acetyl group content. The structure of GXM was determined by methylation analysis, partial acid hydrolysis, NMR analyses, and controlled Smith degradation. These analyses indicated that GXM has the following structure: an alpha-(1-->3)-D-mannan backbone with side chains of beta-D-glucuronic acid residues bound to the C-2 position of the mannose residue. The C-6 position of the mannose is substituted with D-man-beta-(1-->4)-D-xyl-beta-(1--> disaccharide. Furthermore, the existence of side chains containing more than two xylose residues was suggested. This mannosylxylose side chain is a novel structure in polysaccharides of C. neoformans and other Cryptococcus species.


Assuntos
Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/microbiologia , Criptococose/complicações , Cryptococcus/química , Cryptococcus/classificação , Polissacarídeos/análise , Polissacarídeos/química , Criptococose/microbiologia , Cryptococcus/isolamento & purificação , Cryptococcus neoformans , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA