RESUMO
The objective of the present study was to establish a method for nuclear replacement in metaphase-II (M-II) stage porcine oocytes. Karyoplasts containing M-II chromosomes (K) and cytoplasts without chromosomes (C) were produced from in vitro-matured oocytes by a serial centrifugation method. The oocytes were then reconstructed by fusion of one karyoplast with 1, 2, 3 or 4 cytoplasts (K + 1C, K + 2C, K + 3C and K + 4C, respectively). Reconstructed oocytes, karyoplasts without fusion of any cytoplast (K) and zona-free M-II oocytes (control) were used for experiments. The rates of female pronucleus formation after parthenogenetic activation in all groups of reconstructed oocytes (58.2-77.4%) were not different from those of the K and control groups (58.2% and 66.0%, respectively). In vitro fertilization was carried out to assay the fertilization ability and subsequent embryonic development of the reconstructed oocytes. The cytoplast : karyoplast ratio did not affect the fertilization status (penetration and male pronuclear formation rates) of the oocytes. A significantly high monospermy rate was found in K oocytes (p < 0.05, 61.6%) compared with the other groups (18.2-32.8%). Blastocyst formation rates increased significantly as the number of the cytoplasts fused with karyoplasts increased (p < 0.05, 0.0-15.3%). The blastocyst rate in the K + 4C group (15.3%) was comparable with that of the control (17.8%). Total cell numbers in both the K + 3C and K + 4C groups (16.0 and 15.3 cells, respectively) were comparable with that of the control (26.2 cells). Our results demonstrate that a serial centrifugation and fusion (Centri-Fusion) is an effective method for producing M-II chromosome transferred oocytes with normal fertilization ability and in vitro development. It is suggested that the number of cytoplasts fused with a karyoplast plays a critical role in embryonic development.
Assuntos
Núcleo Celular , Oócitos/fisiologia , Suínos/fisiologia , Animais , Blastocisto/fisiologia , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Masculino , Partenogênese/fisiologiaRESUMO
It is anticipated that the utilization of spermatogonia through testicular xenografting will open new avenues for the conservation of male gametes. With the aim of establishing this new technique for genetic preservation of pigs, we used it in combination with intracytoplasmic sperm injection (ICSI). Testicular tissues derived from neonatal piglets, which contained seminiferous cords consisting of only gonocytes/spermatogonia, were transplanted under the back skin of castrated nude mice. Between 125 and 192 d after xenografting, sperm (morphologically similar to epididymal sperm) were recovered from 41 of the 65 host mice (63.1%). Testicular spermatozoa from adult boars were used as a positive control. A single spermatozoon was injected into an in vitro matured porcine oocyte, and the oocytes were electro-stimulated and cultured (graft-ICSI and testis-ICSI, respectively). Blastocyst rates in both ICSI groups (24.9% and 37.4%, respectively) were higher (P<0.05) than those without the injection procedure (parthenogenetic; 12.7%) and after injection of a small amount of injection buffer (sham; 13.0%). Rates of diploid blastocysts in both graft-ICSI and testis-ICSI groups (48.9% and 60.6%) were higher (P<0.05) than those in the parthenogenetic and sham groups (13.5% and 28.0%). Therefore, we demonstrated that porcine oocytes injected with xenogeneic sperm have in vitro developmental ability to the blastocyst stage.
Assuntos
Blastocisto/fisiologia , Injeções de Esperma Intracitoplásmicas/veterinária , Espermatozoides/crescimento & desenvolvimento , Suínos , Testículo/transplante , Transplante Heterólogo , Animais , Animais Recém-Nascidos , Diploide , Desenvolvimento Embrionário , Feminino , Cariotipagem/veterinária , Masculino , Camundongos , Camundongos Nus , Orquiectomia , Espermatozoides/citologia , Testículo/citologiaRESUMO
Successful offspring production after intracytoplasmic injection of freeze-dried sperm has been reported in laboratory animals but not in domesticated livestock, including pigs. The integrity of the DNA in the freeze-dried sperm is reported to affect embryogenesis. Release of endonucleases from the sperm is one of the causes of induction of sperm DNA fragmentation. We examined the effects of chelating agents, which inhibit the activation of such enzymes, on DNA fragmentation in freeze-dried sperm and on the in vitro and in vivo developmental ability of porcine oocytes following boar sperm head injection. Boar ejaculated sperm were sonicated, suspended in buffer supplemented with (1) 50 mM EGTA, (2) 50 mM EDTA, (3) 10 mM EDTA, or (4) no chelating agent and freeze-dried. A fertilization medium (Pig-FM) was used as a control. The rehydrated spermatozoa in each group were then incubated in Pig-FM at room temperature. The rate of DNA fragmentation in the control group, as assessed by the TUNEL method, increased gradually as time after rehydration elapsed (2.8% at 0 min to 12.2% at 180 min). However, the rates in all experimental groups (1-4) did not increase, even at 180 min (0.7-4.1%), which were all significantly lower (p < 0.05) than that of the control group. The rate of blastocyst formation after the injection in the control group (6.0%) was significantly lower (p < 0.05) than those in the 50 mM EGTA (23.1%) and 10 mM EDTA (22.6%) groups incubated for 120-180 min. The average number of blastocyst cells in the 50 mM EGTA group (33.1 cells) was significantly higher (p < 0.05) than that in the 10 mM EDTA group (17.8 cells). Finally, we transferred oocytes from 50 mM EGTA or control groups incubated for 0-60 min into estrous-synchronized recipients. The two recipients of the control oocytes became pregnant and one miscarried two fetuses on day 39. The results suggested that fragmentation of DNA in freeze-dried boar sperm is one of the causes of decreased in vitro developmental ability of injected oocytes to the blastocyst stage. Supplementation with EGTA in a freeze-drying buffer improves this ability.
Assuntos
Injeções de Esperma Intracitoplásmicas/veterinária , Sus scrofa/embriologia , Animais , Quelantes , Fragmentação do DNA , Ácido Egtázico , Desenvolvimento Embrionário , Feminino , Liofilização/métodos , Liofilização/veterinária , Técnicas In Vitro , Masculino , Oócitos , Gravidez , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Cabeça do Espermatozoide/transplanteRESUMO
It is generally accepted that cumulus cells support the nuclear maturation of mammalian oocytes. In the present study, we examined relationships between the cytoplasmic glutathione (GSH) content of porcine oocytes, and oocyte nuclear maturation, fertilization or subsequent embryonic development. Cumulus-oocyte complexes (COCs; control group) and oocytes denuded of cumulus cells after collection (DO 0h group) were cultured for 24h with dibutyryl cAMP, eCG and hCG (first culture step) and then for a further 20h without supplements (second culture step; 44h total culture). After the first culture step, some of the COCs were denuded, either completely (DO 24h group) or partly (H-DO 24h group), and then matured by the second culture step. Also, in the second culture step, some DOs were co-cultured with cumulus cells that had been pre-cultured for 24h (DO 24h+CC group). The maturation rates of all the cumulus-removed groups (DO 0h, DO 24h, H-DO 24h and DO 24h+CC groups) were lower (34.3-45.0%) than that of the control group (64.5%; P<0.05). The GSH contents of matured oocytes in the completely denuded groups (DO 0h, DO 24h and DO 24h+CC groups) were lower (4.03-5.26pmol/oocyte) than that of the control group (9.60pmol/oocyte; P<0.05); however, the H-DO 24h group had an intermediate value (7.0pmol/oocyte). The male pronuclear formation rates of completely denuded oocytes were lower (41.4-59.3%) than that of the control group (89.4%; P<0.05), whereas the H-DO 24h group had an intermediate rate (80.0%). The blastocyst formation rates of the completely denuded oocytes were lower (3.0-4.5%) than that of the control group (19.9%; P<0.05), and the H-DO 24h group again had an intermediate rate (11.6%). The GSH content was correlated with the rates of male pronuclear formation (P<0.01) and blastocyst formation (P<0.01), and also with the number of cells per blastocyst (P<0.01). In conclusion, we inferred that GSH synthesized by intact cumulus cells during maturation culture improved oocyte maturation and played an important role in fertilization and embryonic development.