RESUMO
BACKGROUND: Early embryo implantation is a complex phenomenon characterized by the presence of an implantation-competent blastocyst and a receptive endometrium. Embryo development and endometrial receptivity must be synchronized and an adequate two-way dialogue between them is necessary for maternal recognition and implantation. Proteases have been described as blastocyst-secreted proteins involved in the hatching process and early implantation events. These enzymes stimulate intracellular calcium signaling pathways in endometrial epithelial cells (EEC). However, the exact molecular players underlying protease-induced calcium signaling, the subsequent downstream signaling pathways and the biological impact of its activation remain elusive. METHODS: To identify gene expression of the receptors and ion channels of interest in human and mouse endometrial epithelial cells, RNA sequencing, RT-qPCR and in situ hybridization experiments were conducted. Calcium microfluorimetric experiments were performed to study their functional expression. RESULTS: We showed that trypsin evoked intracellular calcium oscillations in EEC of mouse and human, and identified the protease-activated receptor 2 (PAR2) as the molecular entity initiating protease-induced calcium responses in EEC. In addition, this study unraveled the molecular players involved in the downstream signaling of PAR2 by showing that depletion and re-filling of intracellular calcium stores occurs via PLC, IP3R and the STIM1/Orai1 complex. Finally, in vitro experiments in the presence of a specific PAR2 agonist evoked an upregulation of the 'Window of implantation' markers in human endometrial epithelial cells. CONCLUSIONS: These findings provide new insights into the blastocyst-derived protease signaling and allocate a key role for PAR2 as maternal sensor for signals released by the developing blastocyst.
Assuntos
Sinalização do Cálcio , Receptor PAR-2 , Feminino , Humanos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Peptídeo Hidrolases/metabolismo , Cálcio/metabolismo , Endométrio/metabolismo , Blastocisto/fisiologia , Implantação do Embrião/fisiologia , Células Epiteliais/metabolismoRESUMO
Over the past years, research has made impressive breakthroughs towards the development and implementation of 3D cell models for a wide range of applications, such as drug development and testing, organogenesis, cancer biology, and personalized medicine. Opposed to 2D cell monolayer culture systems, advanced 3D cell models better represent the in vivo physiology. However, for these models to deliver scientific insights, appropriate investigation techniques are required. Despite the potential of fluorescence microscopy to visualize these models with high spatial resolution, sample preparation and imaging assays are not straightforward. Here, we provide different protocols of sample preparation for fluorescence imaging, for both matrix-embedded and matrix-free models ( e.g ., organoids and spheroids, respectively). Additionally, we provide detailed guidelines for imaging 3D cell models via confocal multi-photon fluorescence microscopy. We show that using these protocols, images of 3D cell culture systems can be obtained with sub-cellular resolution. Graphical abstract.
RESUMO
The endometrium, lining the uterine lumen, is highly essential for human reproduction. Its exceptional remodeling plasticity, including the transformation process to welcome and nest the embryo, is not well understood. Lack of representative and reliable study models allowing the molecular and cellular mechanisms underlying endometrium development and biology to be deciphered is an important hurdle to progress in the field. Recently, powerful organoid models have been developed that not only recapitulate endometrial biology such as the menstrual cycle, but also faithfully reproduce diseases of the endometrium such as endometriosis. Moreover, single-cell profiling endeavors of the endometrium in health and disease, and of derived organoids, start to provide deeper insight into cellular complexity and expression specificities, and in resulting tissue processes. This granular portrayal will not only help in understanding endometrium biology and disease, but also in pinning down the tissue's stem cells, at present not yet conclusively defined. Here, we provide a general overview of endometrium development and biology, and the efforts of modeling both the healthy tissue, as well as its key diseased form of endometriosis. The future of modeling and deciphering this key tissue, hidden inside the womb, looks bright.
RESUMO
One week after fertilization, human embryos implant into the uterus. This event requires the embryo to form a blastocyst consisting of a sphere encircling a cavity lodging the embryo proper. Stem cells can form a blastocyst model that we called a blastoid1. Here we show that naive human pluripotent stem cells cultured in PXGL medium2 and triply inhibited for the Hippo, TGF-ß and ERK pathways efficiently (with more than 70% efficiency) form blastoids generating blastocyst-stage analogues of the three founding lineages (more than 97% trophectoderm, epiblast and primitive endoderm) according to the sequence and timing of blastocyst development. Blastoids spontaneously form the first axis, and we observe that the epiblast induces the local maturation of the polar trophectoderm, thereby endowing blastoids with the capacity to directionally attach to hormonally stimulated endometrial cells, as during implantation. Thus, we propose that such a human blastoid is a faithful, scalable and ethical model for investigating human implantation and development3,4.
Assuntos
Blastocisto , Células-Tronco Pluripotentes , Blastocisto/metabolismo , Diferenciação Celular , Linhagem da Célula , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , HumanosRESUMO
Ovarian cancer (OC) is the most lethal gynecological cancer. Faithful research models are indispensable to the progression of understanding OC etiology and therapy. Here, we provide a detailed protocol for establishing organoid cultures from patient OC biopsies. The organoids reproduce primary tumor- and patient-specific characteristics including phenotypic properties and genomic aberrations and exhibit patient-dependent responsiveness to drugs. OC-derived organoids provide powerful tools to gain deep insight into the cancer's pathobiology and to screen patient-tumor drug sensitivity to progress toward personalized medicine. For complete details on the use and execution of this protocol, please refer to Maenhoudt et al. (2020).
Assuntos
Técnicas de Cultura de Células/métodos , Organoides/citologia , Neoplasias Ovarianas , Biópsia , Feminino , Genômica , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Medicina de PrecisãoRESUMO
Ovarian cancer (OC) represents the most dismal gynecological cancer. Pathobiology is poorly understood, mainly due to lack of appropriate study models. Organoids, defined as self-developing three-dimensional in vitro reconstructions of tissues, provide powerful tools to model human diseases. Here, we established organoid cultures from patient-derived OC, in particular from the most prevalent high-grade serous OC (HGSOC). Testing multiple culture medium components identified neuregulin-1 (NRG1) as key factor in maximizing OC organoid development and growth, although overall derivation efficiency remained moderate (36% for HGSOC patients, 44% for all patients together). Established organoid lines showed patient tumor-dependent morphology and disease characteristics, and recapitulated the parent tumor's marker expression and mutational landscape. Moreover, the organoids displayed tumor-specific sensitivity to clinical HGSOC chemotherapeutic drugs. Patient-derived OC organoids provide powerful tools for the study of the cancer's pathobiology (such as importance of the NRG1/ERBB pathway) as well as advanced preclinical tools for (personalized) drug screening and discovery.
Assuntos
Modelos Biológicos , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Feminino , Humanos , Neuregulina-1/metabolismoRESUMO
Endometrial disorders represent a major gynaecological burden. Current research models fail to recapitulate the nature and heterogeneity of these diseases, thereby hampering scientific and clinical progress. Here we developed long-term expandable organoids from a broad spectrum of endometrial pathologies. Organoids from endometriosis show disease-associated traits and cancer-linked mutations. Endometrial cancer-derived organoids accurately capture cancer subtypes, replicate the mutational landscape of the tumours and display patient-specific drug responses. Organoids were also established from precancerous pathologies encompassing endometrial hyperplasia and Lynch syndrome, and inherited gene mutations were maintained. Endometrial disease organoids reproduced the original lesion when transplanted in vivo. In summary, we developed multiple organoid models that capture endometrial disease diversity and will provide powerful research models and drug screening and discovery tools.