Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(47): 6960-6968, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37865599

RESUMO

Preventing, detecting, and responding to substandard and falsified vaccines is of critical importance for ensuring the safety, efficacy, and public trust in vaccines. This is of heightened importance in context of public health crisis, such as the COVID-19 pandemic, in which extreme world-wide shortages of vaccines provided a fertile ground for exploitation by falsifiers. Here, a proof-of-concept study explored the feasibility of using a handheld Spatially Offset Raman Spectroscopy (SORS) device to authenticate COVID-19 vaccines through rapid analysis of unopened vaccine vials. The results show that SORS can verify the chemical identity of dominant excipients non-invasively through vaccine vial walls. The ability of SORS to identify potentially falsified COVID-19 vaccines was demonstrated by measurement of surrogates for falsified vaccines contained in vaccine vials. In all cases studied, the SORS technique was able to differentiate between surrogate samples from the genuine COVISHIELD™ vaccine. The genuine vaccines tested included samples from six batches across two manufacturing sites to account for any potential variations between batches or manufacturing sites. Batch and manufacturing site variations were insignificant. In conjunction with existing security features, for example on labels and packaging, SORS provided an intrinsic molecular fingerprint of the dominant excipients of the vaccines. The technique could be extended to other COVID-19 and non-COVID-19 vaccines, as well as other liquid medicines. As handheld and portable SORS devices are commercially available and widely used for other purposes, such as airport security, they are rapidly deployable non-invasive screening tools for vaccine authentication.


Assuntos
COVID-19 , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Vacinas contra COVID-19 , Excipientes , Pandemias , COVID-19/prevenção & controle
2.
Biologicals ; 36(1): 73-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17892948

RESUMO

Current lot release testing of conventional vaccines emphasizes quality control of the final product and is characterized by its extensive use of laboratory animals. This report, which is based on the outcome of an ECVAM (European Centre for Validation of Alternative Methods, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy) workshop, discusses the concept of consistency testing as an alternative approach for lot release testing. The consistency approach for the routine release of vaccines is based upon the principle that the quality of vaccines is a consequence of a quality system and of consistent production of lots with similar characteristics to those lots that have been shown to be safe and effective in humans or the target species. The report indicates why and under which circumstances this approach can be applied, the role of the different stakeholders, and the need for international harmonization. It also gives recommendations for its implementation.


Assuntos
Vacinas/normas , Animais , Humanos , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA