Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988290

RESUMO

The localization of condensin along chromosomes is crucial for their accurate segregation in anaphase. Condensin is enriched at telomeres but how and for what purpose had remained elusive. Here, we show that fission yeast condensin accumulates at telomere repeats through the balancing acts of Taz1, a core component of the shelterin complex that ensures telomeric functions, and Mit1, a nucleosome remodeler associated with shelterin. We further show that condensin takes part in sister-telomere separation in anaphase, and that this event can be uncoupled from the prior separation of chromosome arms, implying a telomere-specific separation mechanism. Consistent with a cis-acting process, increasing or decreasing condensin occupancy specifically at telomeres modifies accordingly the efficiency of their separation in anaphase. Genetic evidence suggests that condensin promotes sister-telomere separation by counteracting cohesin. Thus, our results reveal a shelterin-based mechanism that enriches condensin at telomeres to drive in cis their separation during mitosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Complexo Shelterina , Anáfase , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
iScience ; 26(9): 107614, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664590

RESUMO

In most eukaryotes, meiotic crossovers (COs) are limited to 1-3 per chromosome, and are prevented from occurring close to one another by CO interference. The fission yeast Schizosaccharomyces pombe, an exception to these general rules, was reported to have the highest CO number per chromosome and no or weak interference. However, global CO frequency was indirectly estimated, calling for confirmation. Here, we used an innovative strategy to determine COs genome-wide in S. pombe. We confirmed weak CO interference, acting at physical distances compatible with the patterning of recombination precursors. We revealed a slight co-variation in CO number between chromosomes, suggesting that a limiting pro-CO factor varies between meiocytes. CO number per chromosome varies proportionally with chromosome size, with the three chromosomes having, on average, 15.9, 12.5, and 7.0 COs, respectively. This reinforces S. pombe's status as the eukaryote with the highest CO number per chromosome described to date.

3.
PLoS Genet ; 18(6): e1010124, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727827

RESUMO

Break-induced replication (BIR) is a highly mutagenic eukaryotic homologous DNA recombination pathway that repairs one-ended DNA double strand breaks such as broken DNA replication forks and eroded telomeres. While searching for cis-acting factors regulating ectopic BIR efficiency, we found that ectopic BIR efficiency is the highest close to chromosome ends. The variations of ectopic BIR efficiency as a function of the length of DNA to replicate can be described as a combination of two decreasing exponential functions, a property in line with repeated cycles of strand invasion, elongation and dissociation that characterize BIR. Interestingly, the apparent processivity of ectopic BIR depends on the length of DNA already synthesized. Ectopic BIR is more susceptible to disruption during the synthesis of the first ~35-40 kb of DNA than later, notably when the template chromatid is being transcribed or heterochromatic. Finally, we show that the Srs2 helicase promotes ectopic BIR from both telomere proximal and telomere distal regions in diploid cells but only from telomere proximal sites in haploid cells. Altogether, we bring new light on the factors impacting a last resort DNA repair pathway.


Assuntos
Proteínas de Saccharomyces cerevisiae , Transativadores , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética
4.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724421

RESUMO

Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.


Assuntos
Instabilidade Genômica , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Replicação do DNA , Genoma Fúngico , Recombinação Homóloga , Sinais de Localização Nuclear , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero
5.
Cell Stress ; 4(3): 48-63, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32190820

RESUMO

In Saccharomyces cerevisiae, the absence of Pif1 helicase induces the instability of G4-containing CEB1 minisatellite during leading strand but not lagging strand replication. We report that RPA and Pif1 cooperate to maintain CEB1 stability when the G4 forming strand is either on the leading or lagging strand templates. At the leading strand, RPA acts in the same pathway as Pif1 to maintain CEB1 stability. Consistent with this result, RPA co-precipitates with Pif1. This association between Pif1 and RPA is affected by the rfa1-D228Y mutation that lowers the affinity of RPA in particular for G-rich single-stranded DNA. At the lagging strand, in contrast to pif1Δ, the rfa1-D228Y mutation strongly increases the frequency of CEB1 rearrangements. We explain that Pif1 is dispensable at the lagging strand DNA by the ability of RPA by itself to prevent formation of stable G-rich secondary structures during lagging strand synthesis. Remarkably, overexpression of Pif1 rescues the instability of CEB1 at the lagging strand in the rfa1-D228Y mutant indicating that Pif1 can also act at the lagging strand. We show that the effects of the rfa1-D228Y (rpa1-D223Y in fission yeast) are conserved in Schizosaccharomyces pombe. Finally, we report that RNase H1 interacts in a DNA-dependent manner with RPA in budding yeast, however overexpression of RNase H1 does not rescue CEB1 instability observed in pif1Δ and rfa1-D228Y mutants. Collectively these results add new insights about the general role of RPA in preventing formation of DNA secondary structures and in coordinating the action of factors aimed at resolving them.

6.
Nucleic Acids Res ; 48(6): 3029-3041, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31980821

RESUMO

Telomere anchoring to nuclear envelope (NE) is a key feature of nuclear genome architecture. Peripheral localization of telomeres is important for chromatin silencing, telomere replication and for the control of inappropriate recombination. Here, we report that fission yeast quiescent cells harbor predominantly a single telomeric cluster anchored to the NE. Telomere cluster association to the NE relies on Rap1-Bqt4 interaction, which is impacted by the length of telomeric sequences. In quiescent cells, reducing telomere length or deleting bqt4, both result in an increase in transcription of the telomeric repeat-containing RNA (TERRA). In the absence of Bqt4, telomere shortening leads to deep increase in TERRA level and the concomitant formation of subtelomeric rearrangements (STEEx) that accumulate massively in quiescent cells. Taken together, our data demonstrate that Rap1-Bqt4-dependent telomere association to NE preserves telomere integrity in post-mitotic cells, preventing telomeric transcription and recombination. This defines the nuclear periphery as an area where recombination is restricted, creating a safe zone for telomeres of post-mitotic cells.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Divisão Celular/genética , Recombinação Genética , Schizosaccharomyces/genética , Complexo Shelterina , Telômero/genética , Transcrição Gênica
7.
Sci Adv ; 4(5): eaar2740, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29774234

RESUMO

Mammalian CST (CTC1-STN1-TEN1) complex fulfills numerous functions including rescue of the stalled replication forks and termination of telomerase action. In fission yeast lacking the CTC1 ortholog, the Stn1-Ten1 complex restricts telomerase action via its sumoylation-mediated interaction with Tpz1TPP1. We identify a small ubiquitin-like modifier (SUMO)-interacting motif (SIM) in the carboxyl-terminal part of Stn1 and show that this domain is crucial for SUMO and Tpz1-SUMO interactions. Point mutations in the SIM (Stn1-226) lead to telomere elongation, impair Stn1-Ten1 recruitment to telomeres, and enhance telomerase binding, revealing that Stn1 SIM domain contributes to the inhibition of telomerase activity at chromosome ends. Our results suggest that Stn1-Ten1 promotes DNA synthesis at telomeres to limit single-strand DNA accumulation. We further demonstrate that Stn1 functions in the replication of telomeric and subtelomeric regions in a Taz1-independent manner. Genetic analysis reveals that misregulation of origin firing and/or telomerase inhibition circumvents the replication defects of the stn1-226 mutant. Together, our results show that the Stn1-Ten1 complex has a dual function at telomeres by limiting telomerase action and promoting chromosome end replication.


Assuntos
Chaperonas Moleculares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Expressão Gênica , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Ligação Proteica , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética
8.
Curr Genet ; 64(4): 901-905, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29392410

RESUMO

Telomere maintenance mechanism is poorly studied in quiescence, a reversible non-proliferative state. We previously described in fission yeast a new mode of repair of telomeres named STEEx, that specifically operates in post-mitotic cells harboring eroded telomeres. This mechanism, promoted by transcription-induced telomeric recombination, prevents cells to exit properly from quiescence, suggesting that STEEx act as an anti-proliferative barrier. Here, we further showed that STEEx are genetically controlled by the Tel1ATM- and Rad3ATR- dependent DDR pathways. We discussed the possibility that STEEx represent a boundary between quiescence and vegetative cycle.


Assuntos
Ciclo Celular/genética , Schizosaccharomyces/genética , Homeostase do Telômero/genética , Telômero/genética , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Mutação , Fosforilação , Proteínas Quinases/genética , Telomerase/genética
9.
Nat Commun ; 8(1): 1684, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167439

RESUMO

While the mechanisms of telomere maintenance has been investigated in dividing cells, little is known about the stability of telomeres in quiescent cells and how dysfunctional telomeres are processed in non-proliferating cells. Here we examine the stability of telomeres in quiescent cells using fission yeast. While wild type telomeres are stable in quiescence, we observe that eroded telomeres were highly rearranged during quiescence in telomerase minus cells. These rearrangements depend on homologous recombination (HR) and correspond to duplications of subtelomeric regions. HR is initiated at newly identified subtelomeric homologous repeated sequences (HRS). We further show that TERRA (Telomeric Repeat-containing RNA) is increased in post-mitotic cells with short telomeres and correlates with telomere rearrangements. Finally, we demonstrate that rearranged telomeres prevent cells to exit properly from quiescence. Taken together, we describe in fission yeast a mode of telomere repair mechanism specific to post-mitotic cells that is likely promoted by transcription.


Assuntos
Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homeostase do Telômero/genética , Telômero/genética , Telômero/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Rearranjo Gênico , Instabilidade Genômica , Recombinação Homóloga , Modelos Genéticos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Reparo de DNA por Recombinação , Fase de Repouso do Ciclo Celular/genética , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética , Duplicações Segmentares Genômicas
10.
Genes (Basel) ; 8(2)2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28146113

RESUMO

Telomeres are complex nucleoprotein structures that protect the extremities of linear chromosomes. Telomere replication is a major challenge because many obstacles to the progression of the replication fork are concentrated at the ends of the chromosomes. This is known as the telomere replication problem. In this article, different and new aspects of telomere replication, that can threaten the integrity of telomeres, will be reviewed. In particular, we will focus on the functions of shelterin and the replisome for the preservation of telomere integrity.

11.
EMBO J ; 34(14): 1942-58, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26041456

RESUMO

Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination, and repair. In fission yeast, the Rpa1-D223Y mutation provokes telomere shortening. Here, we show that this mutation impairs lagging-strand telomere replication and leads to the accumulation of secondary structures and recruitment of the homologous recombination factor Rad52. The presence of these secondary DNA structures correlates with reduced association of shelterin subunits Pot1 and Ccq1 at telomeres. Strikingly, heterologous expression of the budding yeast Pif1 known to efficiently unwind G-quadruplex rescues all the telomeric defects of the D223Y cells. Furthermore, in vitro data show that the identical D to Y mutation in human RPA specifically affects its ability to bind G-quadruplex. We propose that RPA prevents the formation of G-quadruplex structures at lagging-strand telomeres to promote shelterin association and facilitate telomerase action at telomeres.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Telômero/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quadruplex G , Mutação , Proteína de Replicação A/genética , Proteínas de Schizosaccharomyces pombe/genética , Complexo Shelterina , Telômero/química , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/metabolismo
12.
PLoS Genet ; 8(9): e1002952, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028359

RESUMO

Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3'-end, indicating that repression is coupled to 3'-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3'-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3'-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3'-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3'-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3'-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms.


Assuntos
Histona-Lisina N-Metiltransferase , Metilação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcrição Gênica , Cromatina/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Oligorribonucleotídeos Antissenso/biossíntese , Oligorribonucleotídeos Antissenso/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA