RESUMO
The MuCap experiment at the Paul Scherrer Institute has measured the rate Λ(S) of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultrapure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. Λ(S) is determined from the difference between the µ(-) disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 × 10(10) µ(-) decays, from which we extract the capture rate Λ(S) = (714.9 ± 5.4(stat) ± 5.1(syst)) s(-1) and derive the proton's pseudoscalar coupling g(P)(q(0)(2) = -0.88 m(µ)(2)) = 8.06 ± 0.55.
RESUMO
The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the microp atom was obtained from the difference between the micro(-) disappearance rate in hydrogen and the world average for the micro(+) decay rate, yielding Lambda(S)=725.0+/-17.4 s(-1), from which the induced pseudoscalar coupling of the nucleon, g(P)(q(2)=-0.88m(2)(micro))=7.3+/-1.1, is extracted.