Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Sci Immunol ; 9(92): eadi9575, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207015

RESUMO

Hyperactive TLR7 signaling has long been appreciated as driver of autoimmune disease in mouse models. Recently, gain-of-function mutations in TLR7 were identified as a monogenic cause of human lupus. TLR7 is an intracellular transmembrane receptor, sensing RNA breakdown products within late endosomes. Here, we show that endosome dysfunction leads to unrestricted TLR7 signaling and is associated with human lupus. The late endosomal BORC complex together with the small GTPase Arl8b controls intracellular TLR7 levels by regulating receptor turnover. This requires a direct interaction between the TLR7-associated trafficking factor Unc93b1 and Arl8b. We identified an UNC93B1 mutation in a patient with childhood-onset lupus, which results in reduced BORC interaction and endosomal TLR7 accumulation. Therefore, a failure to control TLR7 turnover is sufficient to break immunological tolerance to nucleic acids. Our results highlight the importance of an intact endomembrane system in preventing pathological TLR7 signaling and autoimmune disease.


Assuntos
Doenças Autoimunes , Receptor 7 Toll-Like , Camundongos , Animais , Humanos , Criança , Receptor 7 Toll-Like/genética , Transdução de Sinais , Transporte Proteico , Mutação
3.
J Clin Immunol ; 44(1): 1, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100037

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK) is an SRC-family kinase critical for initiation and propagation of T-cell antigen receptor (TCR) signaling through phosphorylation of TCR-associated CD3 chains and recruited downstream molecules. Until now, only one case of profound T-cell immune deficiency with complete LCK deficiency [1] caused by a biallelic missense mutation (c.1022T>C, p.L341P) and three cases of incomplete LCK deficiency [2] caused by a biallelic splice site mutation (c.188-2A>G) have been described. Additionally, deregulated LCK expression has been associated with genetically undefined immune deficiencies and hematological malignancies. Here, we describe the second case of complete LCK deficiency in a 6-month-old girl born to consanguineous parents presenting with profound T-cell immune deficiency. Whole exome sequencing (WES) revealed a novel pathogenic biallelic missense mutation in LCK (c.1393T>C, p.C465R), which led to the absence of LCK protein expression and phosphorylation, and a consecutive decrease in proximal TCR signaling. Loss of conventional CD4+ and CD8+ αßT-cells and homeostatic T-cell expansion was accompanied by increased γδT-cell and Treg percentages. Surface CD4 and CD8 co-receptor expression was reduced in the patient T-cells, while the heterozygous mother had impaired CD4 and CD8 surface expression to a lesser extent. We conclude that complete LCK deficiency is characterized by profound T-cell immune deficiency, reduced CD4 and CD8 surface expression, and a characteristic TCR signaling disorder. CD4 and CD8 surface expression may be of value for early detection of mono- and/or biallelic LCK deficiency.


Assuntos
Síndromes de Imunodeficiência , Feminino , Humanos , Lactente , Fosforilação , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
4.
EMBO J ; 42(8): e110597, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36912165

RESUMO

The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.


Assuntos
Imunidade Adaptativa , Linfócitos T CD8-Positivos , DNA Mitocondrial , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo
5.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36515678

RESUMO

Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.


Assuntos
Antígenos CD28 , Proteínas dos Microfilamentos , Humanos , Antígenos CD28/metabolismo , Proteínas dos Microfilamentos/genética , Mutação/genética , Fenótipo , Linfócitos T CD4-Positivos
6.
J Allergy Clin Immunol Pract ; 10(7): 1725-1736.e2, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364342

RESUMO

Inborn errors of immunity (IEI) are genetically and clinically heterogeneous disorders that, in addition to infection susceptibility and immune dysregulation, can have an enhanced cancer predisposition. The increasing availability of upfront next-generation sequencing diagnostics in immunology and oncology have uncovered substantial overlap of germline and somatic genetic conditions that can result in immunodeficiency and cancer. However, broad application of unbiased genetics in these neighboring disciplines still needs to be deployed, and joined therapeutic strategies guided by germline and somatic genetic risk factors are lacking. We illustrate the current difficulties encountered in clinical practice, summarize the historical development of pathophysiological concepts of cancer predisposition, and review select genetic, molecular, and cellular mechanisms of well-defined and illustrative disease entities such as DNA repair defects, combined immunodeficiencies with Epstein-Barr virus susceptibility, autoimmune lymphoproliferative syndromes, regulatory T-cell disorders, and defects in cell intrinsic immunity. We review genetic variants that, when present in the germline, cause IEI with cancer predisposition but, when arising as somatic variants, behave as oncogenes and cause specific cancer entities. We finally give examples of small molecular compounds that are developed and studied to target genetically defined cancers but might also proof useful to treat IEI.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Predisposição Genética para Doença , Genômica , Herpesvirus Humano 4 , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
7.
Sci Rep ; 12(1): 3906, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273242

RESUMO

NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 (ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2-dependent signaling and proinflammatory cytokine production in patient's cells and heterologous cellular models with overexpression of the NOD2 mutant. Immunoprecipitation-coupled mass spectrometry unveiled the ATPase valosin-containing protein (VCP) as novel interaction partner of wildtype NOD2, while the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells led to impaired NF-κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin-induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of NOD2. Taken together, these data suggest that VCP-mediated inflammatory responses upon ER stress are NOD2-dependent.


Assuntos
Estresse do Retículo Endoplasmático , Interleucina-8 , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Humanos , Interleucina-8/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
8.
Sci Immunol ; 6(60)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145065

RESUMO

Analysis of autoinflammatory and immunodeficiency disorders elucidates human immunity and fosters the development of targeted therapies. Oligoadenylate synthetase 1 is a type I interferon-induced, intracellular double-stranded RNA (dsRNA) sensor that generates 2'-5'-oligoadenylate to activate ribonuclease L (RNase L) as a means of antiviral defense. We identified four de novo heterozygous OAS1 gain-of-function variants in six patients with a polymorphic autoinflammatory immunodeficiency characterized by recurrent fever, dermatitis, inflammatory bowel disease, pulmonary alveolar proteinosis, and hypogammaglobulinemia. To establish causality, we applied genetic, molecular dynamics simulation, biochemical, and cellular functional analyses in heterologous, autologous, and inducible pluripotent stem cell-derived macrophages and/or monocytes and B cells. We found that upon interferon-induced expression, OAS1 variant proteins displayed dsRNA-independent activity, which resulted in RNase L-mediated RNA cleavage, transcriptomic alteration, translational arrest, and dysfunction and apoptosis of monocytes, macrophages, and B cells. RNase L inhibition with curcumin modulated and allogeneic hematopoietic cell transplantation cured the disorder. Together, these data suggest that human OAS1 is a regulator of interferon-induced hyperinflammatory monocyte, macrophage, and B cell pathophysiology.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças da Imunodeficiência Primária/genética , 2',5'-Oligoadenilato Sintetase/imunologia , 2',5'-Oligoadenilato Sintetase/isolamento & purificação , 2',5'-Oligoadenilato Sintetase/metabolismo , Linfócitos B/imunologia , Células Cultivadas , Análise Mutacional de DNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ensaios Enzimáticos , Mutação com Ganho de Função/imunologia , Técnicas de Inativação de Genes , Transplante de Células-Tronco Hematopoéticas , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/terapia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Monócitos/imunologia , Cultura Primária de Células , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/terapia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
J Clin Immunol ; 41(7): 1536-1548, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080085

RESUMO

Bi-allelic variants in the dedicator of cytokinesis 8 (DOCK8) gene cause a combined immunodeficiency, characterized by recurrent sinopulmonary and skin infections, food allergies, eczema, eosinophilia, and elevated IgE. Long-term outcome is poor given susceptibility to infections, malignancy, and vascular complications. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option and has shown promising outcome. The impact of mixed chimerism on long-term outcome is unclear. We reasoned that reversal of disease phenotype would depend on cell lineage-specific chimerism. DOCK8 variants were confirmed by Sanger and/or exome sequencing and immunoblot and/or intracellular flow cytometry. Donor chimerism was analyzed by XY-fluorescence in situ hybridization or quantitative short tandem repeat PCR. Outcome was assessed by laboratory tests, lymphocyte subsets, intracellular DOCK8 protein flow cytometry, T-cell proliferation analysis, and multiparameter immunoblot allergy screening. We report on nine patients, four of whom with mixed chimerism, with a median follow-up of 78 months after transplantation. Overall, we report successful transplantation with improvement of susceptibility to infections and allergies, and resolution of eczema in all patients. Immunological outcome in patients with mixed chimerism suggests a selective advantage for wild-type donor T-cells but lower donor B-cell chimerism possibly results in a tendency to hypogammaglobulinemia. No increased infectious and allergic complications were associated with mixed chimerism. Aware of the relatively small cohort size, we could not demonstrate a consistent detrimental effect of mixed chimerism on clinical outcomes. We nevertheless advocate aiming for complete donor chimerism in treating DOCK8 deficiency, but recommend reduced toxicity conditioning.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência/terapia , Adolescente , Criança , Quimerismo , Feminino , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoglobulina E/sangue , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Lactente , Contagem de Linfócitos , Masculino , Estudos Retrospectivos , Viroses/genética , Viroses/imunologia , Viroses/terapia
10.
Curr Oncol ; 29(1): 94-110, 2021 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35049682

RESUMO

Rhabdoid tumors (RT) are among the most aggressive tumors in early childhood. Overall survival remains poor, and treatment only effectively occurs at the cost of high toxicity and late adverse effects. It has been reported that the neurokinin-1 receptor/ substance P complex plays an important role in cancer and proved to be a promising target. However, its role in RT has not yet been described. This study aims to determine whether the neurokinin-1 receptor is expressed in RT and whether neurokinin-1 receptor (NK1R) antagonists can serve as a novel therapeutic approach in treating RTs. By in silico analysis using the cBio Cancer Genomics Portal we found that RTs highly express neurokinin-1 receptor. We confirmed these results by RT-PCR in both tumor cell lines and in human tissue samples of various affected organs. We demonstrated a growth inhibitory and apoptotic effect of aprepitant in viability assays and flow cytometry. Furthermore, this effect proved to remain when used in combination with the cytostatic cisplatin. Western blot analysis showed an upregulation of apoptotic signaling pathways in rhabdoid tumors when treated with aprepitant. Overall, our findings suggest that NK1R may be a promising target for the treatment of RT in combination with other anti-cancer therapies and can be targeted with the NK1R antagonist aprepitant.


Assuntos
Receptores da Neurocinina-1 , Tumor Rabdoide , Aprepitanto/farmacologia , Proliferação de Células , Criança , Pré-Escolar , Humanos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética
11.
Cytometry A ; 99(8): 774-783, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33280233

RESUMO

Cytomegalovirus (CMV)-specific T cells expand with CMV reactivation and are probably prerequisite for control and protection. Given the critical role STAT5A phosphorylation (pSTAT5A) in T cell proliferation, this study presents a simple and sensitive flow cytometric-based pSTAT5A assay to quickly identify CMV-specific T cell proliferation. We determined pSTAT5A in T cells treated with CMV-specific peptide mix (pp65 + IE1 peptides) from 20 healthy adult subjects and three immunodeficient patients with CARMIL-2 mutation. After stimulation, the percentage of pSTAT5A+ T cells in CMV-seropositive (CMV+ ) subjects significantly increased from 3.0% ± 1.9% (unstimulated) to 11.4% ± 5.9% (stimulated) for 24 h. After 7 days of stimulation, the percentage of expanded T cells amounted to 26% ± 17.2%. Conversely, the percentage of pSTAT5A+ T cells and T cell proliferation from CMV-seronegative (CMV- ) subjects hardly changed (from 3.0% ± 1.3% to 3.7% ± 1.8% and from 4.3% ± 2.1% to 5.7% ± 1.7%, respectively). We analyzed the correlation between the percentage of pSTAT5A+ T cells versus (1) CMV-IgG concentrations versus (2) the percentage of expanded T cells and versus (3) the percentage of initial CMV-specific T cells. In immunodeficient patients with CARMIL-2 mutation, CMV-specific pSTAT5A and T cell proliferation were completely deficient. In conclusion, flow cytometric-based pSTAT5A assay represents an appropriate tool to quickly identify CMV-specific T cell proliferation and helps to understand dysfunctions in controlling other pathogens. Flow cytometric-based pSTAT5A assay may be a useful test in clinical practice and merits further validation in large studies.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Linfócitos T CD8-Positivos , Humanos , Fosfoproteínas , Fosforilação , Fator de Transcrição STAT5 , Linfócitos T , Proteínas da Matriz Viral
12.
J Allergy Clin Immunol Pract ; 8(9): 3102-3111, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603902

RESUMO

BACKGROUND: Complete signal transducer and activator of transcription 1 (STAT1) deficiency causes a rare primary immunodeficiency that is characterized by defective IFN-dependent gene expression leading to life-threatening viral and mycobacterial infections early in life. OBJECTIVE: To characterize a novel STAT1 loss-of-function variant leading to pathological infection susceptibility and hyperinflammation. METHODS: Clinical, immunologic, and genetic characterization of a patient with severe infections and hemophagocytic lymphohistiocytosis-like hyperinflammation was investigated. RESULTS: We reported a child of consanguineous parents who presented with multiple severe viral infections that ultimately triggered hemophagocytic lymphohistiocytosis and liver failure. Despite intensified therapy with antivirals and cytomegalovirus-specific donor cells, the child died after hematopoietic stem cell transplantation because of cytomegalovirus reactivation with acute respiratory distress syndrome. Exome sequencing revealed a homozygous STAT1 variant (p.Val339ProfsTer18), leading to loss of STAT1 protein expression. Upon type I and type II IFN stimulation, immune and nonimmune cells showed defective upregulation of IFN-stimulated genes and increased susceptibility to viral infection in vitro. Increased viral infection rates were paralleled by hyperinflammatory ex vivo cytokine responses with increased production of TNF, IL-6, and IL-18. CONCLUSIONS: Complete STAT1 deficiency is a devastating disorder characterized by severe viral infections and ensuing hyperinflammatory responses. Early diagnosis can be made by exome sequencing and variant validation by functional testing of STAT1-dependent programmed cell death 1 ligand 1 surface expression on monocytes. Furthermore, high awareness for hyperinflammatory complications and potential targeted treatment strategies such as IL-18 binding protein could be considered. Hematopoietic stem cell transplantation is the only definitive treatment strategy but remains challenging.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Linfo-Histiocitose Hemofagocítica , Viroses , Criança , Citomegalovirus , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Fator de Transcrição STAT1/genética
13.
J Clin Immunol ; 40(3): 421-434, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965418

RESUMO

PURPOSE: NEMO-deficient patients present with variable degrees of immunodeficiency. Accordingly, treatment ranges from antibiotic prophylaxis and/or IgG-substitution to allogenic hematopoietic stem cell transplantation (HSCT). The correct estimation of the immunodeficiency is essential to avoid over- as well as under-treatment. We compare the immunological phenotype of a NEMO-deficient patient with a newly-described splice site mutation that causes truncation of the NEMO zinc-finger (ZF) domain and a severe clinical course with the immunological phenotype of three NEMO-deficient patients with missense mutations and milder clinical courses and all previously published patients. METHODS: Lymphocyte subsets, proliferation, and intracellular NEMO-expression were assessed by FACS. NF-κB signal transduction was determined by measuring IκBα-degradation and the production of cytokines upon stimulation with TNF-α, IL-1ß, and TLR-agonists in immortalized fibroblasts and whole blood, respectively. RESULTS: The patient with truncated ZF-domain of NEMO showed low levels of IgM and IgG, reduced class-switched memory B cells, almost complete skewing towards naïve CD45RA+ T cells, impaired T cell proliferation as well as cytokine production upon stimulation with TNF-α, IL-1ß, and TLR-agonists. He suffered from severe infections (sepsis, pneumonia, osteomyelitis) during infancy. In contrast, three patients with missense mutations in IKBKG presented neither skewing of T cells towards naïvety nor impaired T cell proliferation. They are stable on prophylactic IgG-substitution or even off any prophylactic treatment. CONCLUSION: The loss of the ZF-domain and the impaired T cell proliferation accompanied by almost complete persistence of naïve T cells despite severe infections are suggestive for a profound immunodeficiency. Allogenic HSCT should be considered early for these patients before chronic sequelae occur.


Assuntos
Genótipo , Quinase I-kappa B/genética , Síndromes de Imunodeficiência/imunologia , Deleção de Sequência/genética , Linfócitos T/imunologia , Adulto , Proliferação de Células , Células Cultivadas , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/metabolismo , Síndromes de Imunodeficiência/genética , Memória Imunológica , Lactente , Masculino , Linhagem , Fenótipo , Prognóstico
14.
Blood ; 134(18): 1510-1516, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31501153

RESUMO

Dysregulated immune responses are essential underlying causes of a plethora of pathologies including cancer, autoimmunity, and immunodeficiency. We here investigated 4 patients from unrelated families presenting with immunodeficiency, autoimmunity, and malignancy. We identified 4 distinct homozygous mutations in TNFRSF9 encoding the tumor necrosis factor receptor superfamily member CD137/4-1BB, leading to reduced, or loss of, protein expression. Lymphocytic responses crucial for immune surveillance, including activation, proliferation, and differentiation, were impaired. Genetic reconstitution of CD137 reversed these defects. CD137 deficiency is a novel inborn error of human immunity characterized by lymphocytic defects with early-onset Epstein-Barr virus (EBV)-associated lymphoma. Our findings elucidate a functional role and relevance of CD137 in human immune homeostasis and antitumor responses.


Assuntos
Doenças Autoimunes/genética , Síndromes de Imunodeficiência/genética , Linfoma/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Doenças Autoimunes/imunologia , Feminino , Predisposição Genética para Doença , Humanos , Síndromes de Imunodeficiência/imunologia , Linfoma/imunologia , Masculino , Linhagem , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência
15.
Inflamm Bowel Dis ; 25(11): 1788-1795, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31115454

RESUMO

BACKGROUND: Children with very early onset inflammatory bowel diseases (VEO-IBD) often have a refractory and severe disease course. A significant number of described VEO-IBD-causing monogenic disorders can be attributed to defects in immune-related genes. The diagnosis of the underlying primary immunodeficiency (PID) often has critical implications for the treatment of patients with IBD-like phenotypes. METHODS: To identify the molecular etiology in 5 patients from 3 unrelated kindred with IBD-like symptoms, we conducted whole exome sequencing. Immune workup confirmed an underlying PID. RESULTS: Whole exome sequencing revealed 3 novel CARMIL2 loss-of-function mutations in our patients. Immunophenotyping of peripheral blood mononuclear cells showed reduction of regulatory and effector memory T cells and impaired B cell class switching. The T cell proliferation and activation assays confirmed defective responses to CD28 costimulation, consistent with CARMIL2 deficiency. CONCLUSION: Our study highlights that human CARMIL2 deficiency can manifest with IBD-like symptoms. This example illustrates that early diagnosis of underlying PID is crucial for the treatment and prognosis of children with VEO-IBD.


Assuntos
Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Proteínas dos Microfilamentos/deficiência , Idade de Início , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Humanos , Linfócitos/imunologia , Masculino , Mutação , Fenótipo , Sequenciamento do Exoma
17.
Proc Natl Acad Sci U S A ; 116(3): 970-975, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30591564

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical regulator of cell death and inflammation, but its relevance for human disease pathogenesis remains elusive. Studies of monogenic disorders might provide critical insights into disease mechanisms and therapeutic targeting of RIPK1 for common diseases. Here, we report on eight patients from six unrelated pedigrees with biallelic loss-of-function mutations in RIPK1 presenting with primary immunodeficiency and/or intestinal inflammation. Mutations in RIPK1 were associated with reduced NF-κB activity, defective differentiation of T and B cells, increased inflammasome activity, and impaired response to TNFR1-mediated cell death in intestinal epithelial cells. The characterization of RIPK1-deficient patients highlights the essential role of RIPK1 in controlling human immune and intestinal homeostasis, and might have critical implications for therapies targeting RIPK1.


Assuntos
Diferenciação Celular , Imunidade nas Mucosas/genética , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Proteína Serina-Treonina Quinases de Interação com Receptores , Imunodeficiência Combinada Severa , Linfócitos B/imunologia , Linfócitos B/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Células HCT116 , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Mutação , NF-kappa B/genética , NF-kappa B/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
18.
Front Immunol ; 9: 368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535735

RESUMO

Epstein-Barr virus positive (EBV+) smooth muscle tumors (SMTs) constitute a very rare oncological entity. They usually develop in the context of secondary immunodeficiency caused by human immunodeficiency virus infection or immunosuppressive treatment after solid organ transplantation. However, in a small fraction of predominantly pediatric patients, EBV+ SMTs may occur in patients with primary immunodeficiency disorders (PIDs), such as GATA2 and CARMIL2 deficiency. In secondary immunodeficiencies and when the underlying condition can not be cured, the treatment of EBV+ SMTs is based on surgery in combination with antiretroviral and reduced or altered immunosuppressive pharmacotherapy, respectively. Importantly, without definitive reconstitution of cellular immunity, long-term survival is poor. This is particularly relevant for patients with EBV+ SMTs on the basis of PIDs. Recently, allogeneic hematopoietic stem cell transplantation resulted in cure of immunodeficiency and EBV+ SMTs in a GATA2-deficient patient. We propose that in the absence of secondary immunodeficiency disorders patients presenting with EBV+ SMTs should be thoroughly evaluated for PIDs. Allogeneic hematopoietic stem cell transplantation should be taken into consideration, ideally in the setting of a prospective clinical trial.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por Vírus Epstein-Barr/imunologia , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4/fisiologia , Síndromes de Imunodeficiência/imunologia , Músculo Liso/patologia , Tumor de Músculo Liso/imunologia , Animais , Humanos , Síndromes de Imunodeficiência/terapia , Imunossupressores/uso terapêutico , Tumor de Músculo Liso/terapia
19.
Clin Immunol ; 191: 52-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567430

RESUMO

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare inherited disorder leading to severe organ-specific autoimmunity. IPEX is caused by hemizygous mutations in FOXP3, which codes for a master transcription factor of regulatory T (TReg) cell development and function. We describe a four-year-old boy with typical but slightly delayed-onset of IPEX with autoimmune diabetes mellitus, enteropathy, hepatitis and skin disease. We found the unreported FOXP3 splice site mutation c.816+2T>A that leads to the loss of leucine-zipper coding exon 7. RNA-Seq revealed that FOXP3Δ7 leads to differential expression of FOXP3 regulated genes. After myeloablative conditioning the patient underwent allogeneic HSCT from a matched unrelated donor. HSCT led to the resolution of all IPEX symptoms including insulin requirement despite persisting autoantibody levels. After initial full donor engraftment nearly complete autologous reconstitution was documented, but donor-derived TReg cells persisted with a lineage-specific chimerism of >70% and the patient remained in clinical remission.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diabetes Mellitus Tipo 1/terapia , Diarreia/genética , Éxons , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Transplante de Células-Tronco Hematopoéticas , Doenças do Sistema Imunitário/congênito , Mutação , Linfócitos T Reguladores/imunologia , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Humanos , Doenças do Sistema Imunitário/genética , Ativação Linfocitária , Masculino
20.
Nat Genet ; 50(3): 344-348, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29483653

RESUMO

Transforming growth factor (TGF)-ß1 (encoded by TGFB1) is the prototypic member of the TGF-ß family of 33 proteins that orchestrate embryogenesis, development and tissue homeostasis1,2. Following its discovery 3 , enormous interest and numerous controversies have emerged about the role of TGF-ß in coordinating the balance of pro- and anti-oncogenic properties4,5, pro- and anti-inflammatory effects 6 , or pro- and anti-fibrinogenic characteristics 7 . Here we describe three individuals from two pedigrees with biallelic loss-of-function mutations in the TGFB1 gene who presented with severe infantile inflammatory bowel disease (IBD) and central nervous system (CNS) disease associated with epilepsy, brain atrophy and posterior leukoencephalopathy. The proteins encoded by the mutated TGFB1 alleles were characterized by impaired secretion, function or stability of the TGF-ß1-LAP complex, which is suggestive of perturbed bioavailability of TGF-ß1. Our study shows that TGF-ß1 has a critical and nonredundant role in the development and homeostasis of intestinal immunity and the CNS in humans.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Fator de Crescimento Transformador beta1/genética , Análise Mutacional de DNA , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Linhagem , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA