Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 28(36): 3209-20, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19561638

RESUMO

Nucleophosmin (NPM), an oligomeric phosphoprotein and nucleolar target of the ARF tumor suppressor, contributes to several critical cellular processes. Previous studies have shown that the human NPM's phosphorylation by cyclin E-cyclin-dependent kinase 2 (cdk2) on threonine (Thr) 199 regulates its translocation from the centrosome during cell cycle progression. Given our previous finding that ARF directly binds NPM, impeding its transit to the cytoplasm and arresting cells before S-phase entry, we hypothesized that ARF might also inhibit NPM phosphorylation. However, ARF induction did not impair phosphorylation of the cdk2 target residue in murine NPM, Thr198. Furthermore, phosphorylation of Thr198 occurred throughout the cell cycle and was concomitant with increases in overall NPM expression. To investigate the cell's presumed requirement for NPM-Thr198 phosphorylation in promoting the processes of growth and proliferation, we examined the effects of a non-phosphorylatable NPM mutant, T198A, in a clean cell system in which endogenous NPM had been removed by RNA interference. Here, we show that the T198A mutant is fully capable of executing NPM's described roles in nucleocytoplasmic shuttling, ribosome export and cell cycle progression. Moreover, the proliferative defects observed with stable NPM knockdown were restored by mutant NPM-T198A expression. Thus, we demonstrate that the reduction in NPM protein expression blocks cellular growth and proliferation, whereas phosphorylation of NPM-Thr198 is not essential for NPM's capacity to drive cell cycle progression and proliferation.


Assuntos
Proliferação de Células , Mutação , Proteínas Nucleares/metabolismo , Treonina/metabolismo , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Nucleares/genética , Nucleofosmina , Fosforilação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Treonina/genética , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Diabetes ; 50(2): 283-90, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11272138

RESUMO

Environmental factors, such as viral infection, have been implicated in the destruction of beta-cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), produced during viral replication, is an active component of a viral infection that stimulates antiviral responses in infected cells. Previous studies have shown that treatment of rat islets with dsRNA in combination with gamma-interferon (IFN-gamma) results in a nitric oxide-dependent inhibition of glucose-stimulated insulin secretion. This study examines the role of nuclear factor-kappaB (NF-kappaB) and the dsRNA-dependent protein kinase (PKR) in dsRNA + IFN-gamma-induced nitric oxide synthase (iNOS) expression and nitric oxide production by rat, mouse, and human islets. Treatment of rat and human islets with dsRNA in the form of polyinosinic-polycytidylic acid (poly IC) and IFN-gamma resulted in iNOS expression and nitric oxide production. Inhibitors of NF-kappaB activation-the proteasome inhibitor MG-132 and the antioxidant pyrrolidine-dithiocarbamate (PDTC)-prevented poly IC + IFN-gamma-induced iNOS expression and nitric oxide production. Incubation of rat islets for 3 h or human islets for 2 h with poly IC alone or poly IC + IFN-gamma resulted in NF-kappaB nuclear translocation and degradation of the NF-kappaB inhibitor protein, IkappaB, events that are prevented by MG-132. PKR has been shown to participate in dsRNA-induced NF-kappaB activation in a number of cell types, including mouse embryonic fibroblasts. However, poly IC stimulated NF-kappaB nuclear translocation and IkappaB degradation to similar levels in islets isolated from mice devoid of PKR (PKR-/-) and wild-type mice (PKR+/+). Furthermore, the genetic absence of PKR did not affect dsRNA + IFN-gamma-induced iNOS expression, nitric oxide production, or the inhibitory actions of these agents on glucose-stimulated insulin secretion. These results suggest that 1) NF-KB activation is required for dsRNA + IFN-gamma-induced iNOS expression, 2) PKR is not required for either dsRNA-induced NF-kappaB activation or dsRNA + IFN-y-induced iNOS expression by islets, and 3) PKR is not required for dsRNA + IFN-gamma-induced inhibition of glucose-stimulated insulin secretion by islets.


Assuntos
Ilhotas Pancreáticas/fisiologia , NF-kappa B/fisiologia , Óxido Nítrico Sintase/metabolismo , eIF-2 Quinase/fisiologia , Animais , Antioxidantes/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Combinação de Medicamentos , Indução Enzimática/fisiologia , Feminino , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Interferon gama/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II , Nitritos/metabolismo , Poli I-C/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tiocarbamatos/farmacologia , eIF-2 Quinase/deficiência
3.
EMBO J ; 19(14): 3630-8, 2000 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-10899117

RESUMO

In this study, the role of the double-stranded (ds) RNA-dependent protein kinase (PKR) in macrophage activation was examined. dsRNA [polyinosinic:polycytidylic acid (poly IC)]-stimulated inducible nitric oxide synthase, interleukin (IL)-1alpha and IL-1beta mRNA expression, nitrite formation and IL-1 release are attenuated in RAW264.7 cells stably expressing dominant negative (dn) mutants of PKR. The transcriptional regulator nuclear factor (NF)-kappaB is activated by dsRNA, and appears to be required for dsRNA-induced macrophage activation. While dnPKR mutants prevent macrophage activation, they fail to attenuate dsRNA-induced IkappaB degradation or NF-kappaB nuclear localization. The inhibitory actions of dnPKR on dsRNA-induced macrophage activation can be overcome by treatment with interferon (IFN)-gamma, an event associated with PKR degradation. Furthermore, dsRNA + IFN-gamma stimulate inducible nitric oxide synthase expression, IkappaB degradation and NF-kappaB nuclear localization to similar levels in macrophages isolated from PKR(-/-) and PKR(+/+) mice. These findings indicate that both NF-kappaB and PKR are required for dsRNA-induced macrophage activation; however, dsRNA-induced NF-kappaB activation occurs by PKR-independent mechanisms in macrophages. In addition, the PKR dependence of dsRNA-induced macrophage activation can be overcome by IFN-gamma.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/enzimologia , RNA de Cadeia Dupla/farmacologia , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Indução Enzimática/efeitos dos fármacos , Proteínas I-kappa B/metabolismo , Interferon gama/farmacologia , Interleucina-1/genética , Interleucina-1/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Mutação , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Poli I-C/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
4.
Diabetes ; 49(3): 346-55, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10868955

RESUMO

In this study, the anti-inflammatory actions of the peroxisome proliferator-activated receptor (PPAR)-gamma agonists 15-deoxy-delta 12,14-prostaglandin J2 (15-d-delta 12,14-PGJ2) and troglitazone have been examined. Treatment of RAW 264.7 cells and CD-1 mouse peritoneal macrophages with lipopolysaccharide (LPS) + interferon-gamma (IFN-gamma) results in inducible nitric oxide synthase (iNOS), inducible cyclooxygenase (COX-2) and interleukin-1 (IL-1) expression, increased production of nitric oxide, and the release of IL-1. In a concentration-dependent manner, 15-d-delta 12,14-PGJ2 inhibits each of these proinflammatory actions of LPS + IFN-gamma, with half-maximal inhibition at approximately 0.5 microg/ml and complete inhibition at 1-5 microg/ml. The inhibitory actions of 15-d-delta 12,14-PGJ2 on LPS + IFN-gamma-induced inflammatory events are not associated with the inhibition of iNOS enzymatic activity or macrophage cell death, but appear to result from an inhibition of iNOS and IL-1 transcription. In addition, the anti-inflammatory actions of 15-d-delta 12,14-PGJ2 are not limited to peritoneal macrophages, as 15-d-delta 12,14-PGJ2 prevents TNF-alpha + LPS-induced resident islet macrophage expression of IL-1beta and beta-cell expression of iNOS stimulated by the local release of IL-1 in rat islets. 15-d-delta 12,14-PGJ2 appears to be approximately 10-fold more effective at inhibiting resident islet macrophage activation (in response to TNF + LPS) than IL-1-induced nitrite production by beta-cells. Two mechanisms appear to be associated with the antiinflammatory actions of both 15-d-delta 12,14-PGJ2 and troglitazone: 1) the direct inhibition of cytokine- and endotoxin-stimulated iNOS and IL-1 transcription; and 2) the inhibition of IL-1 signaling, an event associated with PPAR-gamma agonist-induced activation of the heat shock response (as assayed by heat shock protein 70 expression). These findings indicate that the PPAR-gamma agonists, troglitazone and the J series of prostaglandins, are potent anti-inflammatory agents that prevent cytokine- and endotoxin-stimulated activation of peripheral and resident tissue macrophages and cytokine-induced iNOS expression by beta-cells by the inhibition of transcriptional activation and induction of the heat shock response.


Assuntos
Anti-Inflamatórios/farmacologia , Cromanos/farmacologia , Prostaglandina D2/análogos & derivados , Tiazóis/farmacologia , Tiazolidinedionas , Animais , Linhagem Celular , Citocinas/farmacologia , Temperatura Alta , Interferon gama/antagonistas & inibidores , Interferon gama/farmacologia , Interleucina-1/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II , Nitritos/metabolismo , Prostaglandina D2/farmacologia , Ratos , Ratos Sprague-Dawley , Choque/enzimologia , Troglitazona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA