Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
3.
Vet Microbiol ; 214: 51-55, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29408032

RESUMO

Treatment of Swine Dysentery (SD) caused by Brachyspira hyodysenteriae (B. hyodysenteriae) is carried out using antimicrobials such as macrolides, lincosamides and pleuromutilins leading to the selection of resistant strains. Whole genome sequencing of a multidrug-resistant B. hyodysenteriae strain called BH718 belonging to sequence type (ST) 83 revealed the presence of the lincosamide resistance gene lnu(C) on the small 1724-bp transposon MTnSag1. The strain also contains an A to T substitution at position 2058 (A2058T) in the 23S rRNA gene which is known to be associated with macrolide and lincosamide resistance in B. hyodysenteriae. Testing of additional strains showed that those containing lnu(C) exhibited a higher minimal inhibitory concentration (MIC) of lincomycin (MIC ≥ 64 mg/L) compared to strains lacking lnu(C), even if they also harbor the A2058T mutation. Resistance to pleuromutilins could not be explained by the presence of already reported mutations in the 23S rRNA gene and in the ribosomal protein L3. This study shows that B. hyodysenteriae has the ability to acquire mobile genetic elements conferring resistance to antibiotics.


Assuntos
Brachyspira hyodysenteriae/efeitos dos fármacos , Brachyspira hyodysenteriae/genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Lincosamidas/farmacologia , Animais , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/microbiologia , Testes de Sensibilidade Microbiana , Mutação , RNA Ribossômico 23S/genética , Proteína Ribossômica L3 , Proteínas Ribossômicas/genética , Suínos , Doenças dos Suínos/microbiologia
4.
Front Microbiol ; 6: 985, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441914

RESUMO

Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26835435

RESUMO

Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.


Assuntos
Antibiose , Microbioma Gastrointestinal , Inflamação , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/imunologia , Animais , Animais Recém-Nascidos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA