Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011492, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459363

RESUMO

HIV-1 spreads efficiently through direct cell-to-cell transmission at virological synapses (VSs) formed by interactions between HIV-1 envelope proteins (Env) on the surface of infected cells and CD4 receptors on uninfected target cells. Env-CD4 interactions bring the infected and uninfected cellular membranes into close proximity and induce transport of viral and cellular factors to the VS for efficient virion assembly and HIV-1 transmission. Using novel, cell-specific stable isotope labeling and quantitative mass spectrometric proteomics, we identified extensive changes in the levels and phosphorylation states of proteins in HIV-1 infected producer cells upon mixing with CD4+ target cells under conditions inducing VS formation. These coculture-induced alterations involved multiple cellular pathways including transcription, TCR signaling and, unexpectedly, cell cycle regulation, and were dominated by Env-dependent responses. We confirmed the proteomic results using inhibitors targeting regulatory kinases and phosphatases in selected pathways identified by our proteomic analysis. Strikingly, inhibiting the key mitotic regulator Aurora kinase B (AURKB) in HIV-1 infected cells significantly increased HIV activity in cell-to-cell fusion and transmission but had little effect on cell-free infection. Consistent with this, we found that AURKB regulates the fusogenic activity of HIV-1 Env. In the Jurkat T cell line and primary T cells, HIV-1 Env:CD4 interaction also dramatically induced cell cycle-independent AURKB relocalization to the centromere, and this signaling required the long (150 aa) cytoplasmic C-terminal domain (CTD) of Env. These results imply that cytoplasmic/plasma membrane AURKB restricts HIV-1 envelope fusion, and that this restriction is overcome by Env CTD-induced AURKB relocalization. Taken together, our data reveal a new signaling pathway regulating HIV-1 cell-to-cell transmission and potential new avenues for therapeutic intervention through targeting the Env CTD and AURKB activity.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Aurora Quinase B/metabolismo , Proteômica , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD4/metabolismo , Infecções por HIV/metabolismo
2.
Pac Symp Biocomput ; 28: 145-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540972

RESUMO

Protein subcellular localization is an important factor in normal cellular processes and disease. While many protein localization resources treat it as static, protein localization is dynamic and heavily influenced by biological context. Biological pathways are graphs that represent a specific biological context and can be inferred from large-scale data. We develop graph algorithms to predict the localization of all interactions in a biological pathway as an edge-labeling task. We compare a variety of models including graph neural networks, probabilistic graphical models, and discriminative classifiers for predicting localization annotations from curated pathway databases. We also perform a case study where we construct biological pathways and predict localizations of human fibroblasts undergoing viral infection. Pathway localization prediction is a promising approach for integrating publicly available localization data into the analysis of large-scale biological data.


Assuntos
Algoritmos , Biologia Computacional , Humanos , Bases de Dados de Proteínas
3.
Bioinformatics ; 38(Suppl 1): i10-i18, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758797

RESUMO

SUMMARY: The increasing prevalence and importance of machine learning in biological research have created a need for machine learning training resources tailored towards biological researchers. However, existing resources are often inaccessible, infeasible or inappropriate for biologists because they require significant computational and mathematical knowledge, demand an unrealistic time-investment or teach skills primarily for computational researchers. We created the Machine Learning for Biologists (ML4Bio) workshop, a short, intensive workshop that empowers biological researchers to comprehend machine learning applications and pursue machine learning collaborations in their own research. The ML4Bio workshop focuses on classification and was designed around three principles: (i) emphasizing preparedness over fluency or expertise, (ii) necessitating minimal coding and mathematical background and (iii) requiring low time investment. It incorporates active learning methods and custom open-source software that allows participants to explore machine learning workflows. After multiple sessions to improve workshop design, we performed a study on three workshop sessions. Despite some confusion around identifying subtle methodological flaws in machine learning workflows, participants generally reported that the workshop met their goals, provided them with valuable skills and knowledge and greatly increased their beliefs that they could engage in research that uses machine learning. ML4Bio is an educational tool for biological researchers, and its creation and evaluation provide valuable insight into tailoring educational resources for active researchers in different domains. AVAILABILITY AND IMPLEMENTATION: Workshop materials are available at https://github.com/carpentries-incubator/ml4bio-workshop and the ml4bio software is available at https://github.com/gitter-lab/ml4bio. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Software , Humanos , Fluxo de Trabalho
4.
NPJ Syst Biol Appl ; 7(1): 12, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623016

RESUMO

A common way to integrate and analyze large amounts of biological "omic" data is through pathway reconstruction: using condition-specific omic data to create a subnetwork of a generic background network that represents some process or cellular state. A challenge in pathway reconstruction is that adjusting pathway reconstruction algorithms' parameters produces pathways with drastically different topological properties and biological interpretations. Due to the exploratory nature of pathway reconstruction, there is no ground truth for direct evaluation, so parameter tuning methods typically used in statistics and machine learning are inapplicable. We developed the pathway parameter advising algorithm to tune pathway reconstruction algorithms to minimize biologically implausible predictions. We leverage background knowledge in pathway databases to select pathways whose high-level structure resembles that of manually curated biological pathways. At the core of this method is a graphlet decomposition metric, which measures topological similarity to curated biological pathways. In order to evaluate pathway parameter advising, we compare its performance in avoiding implausible networks and reconstructing pathways from the NetPath database with other parameter selection methods across four pathway reconstruction algorithms. We also demonstrate how pathway parameter advising can guide reconstruction of an influenza host factor network. Pathway parameter advising is method agnostic; it is applicable to any pathway reconstruction algorithm with tunable parameters.


Assuntos
Vias Biossintéticas/fisiologia , Biologia Computacional/métodos , Biologia de Sistemas/métodos , Algoritmos , Animais , Vias Biossintéticas/genética , Análise de Dados , Bases de Dados Factuais , Redes Reguladoras de Genes/genética , Humanos , Modelos Biológicos , Modelos Estatísticos
5.
Magn Reson Imaging ; 33(2): 185-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25460329

RESUMO

Quantifying flow from phase-contrast MRI (PC-MRI) data requires that the vessels of interest be segmented. The estimate of the vessel area will dictate the type and magnitude of the error sources that affect the flow measurement. These sources of errors are well understood, and mathematical expressions have been derived for them in previous work. However, these expressions contain many parameters that render them difficult to use for making practical error estimates. In this work, some realistic assumptions were made that allow for the simplification of such expressions in order to make them more useful. These simplified expressions were then used to numerically simulate the effect of segmentation accuracy and provide some criteria that if met, would keep errors in flow quantification below 10% or 5%. Four different segmentation methods were used on simulated and phantom MRA data to verify the theoretical results. Numerical simulations showed that including partial volumed edge pixels in vessel segmentation provides less error than missing them. This was verified with MRA simulations, as the best performing segmentation method generally included such pixels. Further, it was found that to obtain a flow error of less than 10% (5%), the vessel should be at least 4 (5) pixels in diameter, have an SNR of at least 10:1 and have a peak velocity to saturation cut-off velocity ratio of at least 5:3.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Microscopia de Contraste de Fase/métodos , Algoritmos , Velocidade do Fluxo Sanguíneo , Vasos Sanguíneos/patologia , Gráficos por Computador , Simulação por Computador , Humanos , Modelos Teóricos , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA