Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 27(19): 3053-9, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25866261

RESUMO

By combining a graphene layer and aligned multiwalled carbon nanotube (MWNT) sheets in two different configurations, i) graphene on the top of MWNTs and ii) MWNTs on the top of the graphene, it is demonstrated that optical, electrical, and electromechanical properties of the resulting hybrid films depend on configurations.

2.
Science ; 342(6159): 720-3, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24158906

RESUMO

The growth of high-quality single crystals of graphene by chemical vapor deposition on copper (Cu) has not always achieved control over domain size and morphology, and the results vary from lab to lab under presumably similar growth conditions. We discovered that oxygen (O) on the Cu surface substantially decreased the graphene nucleation density by passivating Cu surface active sites. Control of surface O enabled repeatable growth of centimeter-scale single-crystal graphene domains. Oxygen also accelerated graphene domain growth and shifted the growth kinetics from edge-attachment-limited to diffusion-limited. Correspondingly, the compact graphene domain shapes became dendritic. The electrical quality of the graphene films was equivalent to that of mechanically exfoliated graphene, in spite of being grown in the presence of O.

3.
ACS Nano ; 7(9): 7495-9, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23930903

RESUMO

Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed.


Assuntos
Cobre/química , Grafite/síntese química , Calefação/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Teste de Materiais , Tamanho da Partícula , Ondas de Rádio
4.
Nano Lett ; 12(11): 5679-83, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23083055

RESUMO

Polycrystalline graphene grown by chemical vapor deposition (CVD) on metals and transferred onto arbitrary substrates has line defects and disruptions such as wrinkles, ripples, and folding that adversely affect graphene transport properties through the scattering of the charge carriers. It is found that graphene assembled with metal nanowires (NWs) dramatically decreases the resistance of graphene films. Graphene/NW films with a sheet resistance comparable to that of the intrinsic resistance of graphene have been obtained and tested as a transparent electrode replacing indium tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films into EC devices demonstrates their potential for a wide range of optoelectronic device applications.

5.
ACS Nano ; 6(4): 3224-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22390298

RESUMO

Field-effect transistors fabricated on graphene grown by chemical vapor deposition (CVD) often exhibit large hysteresis accompanied by low mobility, high positive backgate voltage corresponding to the minimum conductivity point (V(min)), and high intrinsic carrier concentration (n(0)). In this report, we show that the mobility reported to date for CVD graphene devices on SiO(2) is limited by trapped water between the graphene and SiO(2) substrate, impurities introduced during the transfer process and adsorbates acquired from the ambient. We systematically study the origin of the scattering impurities and report on a process which achieves the highest mobility (µ) reported to date on large-area devices for CVD graphene on SiO(2): maximum mobility (µ(max)) of 7800 cm(2)/(V·s) measured at room temperature and 12,700 cm(2)/(V·s) at 77 K. These mobility values are close to those reported for exfoliated graphene on SiO(2) and can be obtained through the careful control of device fabrication steps including minimizing resist residue and non-aqueous transfer combined with annealing. It is also observed that CVD graphene is prone to adsorption of atmospheric species, and annealing at elevated temperature in vacuum helps remove these species.

6.
ACS Nano ; 5(9): 6916-24, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21894965

RESUMO

Reproducible dry and wet transfer techniques were developed to improve the transfer of large-area monolayer graphene grown on copper foils by chemical vapor deposition (CVD). The techniques reported here allow transfer onto three different classes of substrates: substrates covered with shallow depressions, perforated substrates, and flat substrates. A novel dry transfer technique was used to make graphene-sealed microchambers without trapping liquid inside. The dry transfer technique utilizes a polydimethylsiloxane frame that attaches to the poly(methyl methacrylate) spun over the graphene film, and the monolayer graphene was transferred onto shallow depressions with 300 nm depth. The improved wet transfer onto perforated substrates with 2.7 µm diameter holes yields 98% coverage of holes covered with continuous films, allowing the ready use of Raman spectroscopy and transmission electron microscopy to study the intrinsic properties of CVD-grown monolayer graphene. Additionally, monolayer graphene transferred onto flat substrates has fewer cracks and tears, as well as lower sheet resistance than previous transfer techniques. Monolayer graphene films transferred onto glass had a sheet resistance of ∼980 Ω/sq and a transmittance of 97.6%. These transfer techniques open up possibilities for the fabrication of various graphene devices with unique configurations and enhanced performance.

7.
ACS Nano ; 5(4): 2433-9, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21361332

RESUMO

Understanding and engineering the domain boundaries in chemically vapor deposited monolayer graphene will be critical for improving its properties. In this study, a combination of transmission electron microscopy (TEM) techniques including selected area electron diffraction, high resolution transmission electron microscopy (HR-TEM), and dark field (DF) TEM was used to study the boundary orientation angle distribution and the nature of the carbon bonds at the domain boundaries. This report provides an important first step toward a fundamental understanding of these domain boundaries. The results show that, for the graphene grown in this study, the 46 measured misorientation angles are all between 11° and 30° (with the exception of one at 7°). HR-TEM images show the presence of adsorbates in almost all of the boundary areas. When a boundary was imaged, defects were seen (dangling bonds) at the boundaries that likely contribute to adsorbates binding at these boundaries. DF-TEM images also showed the presence of a "twinlike" boundary.

8.
ACS Nano ; 5(2): 1321-7, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21275384

RESUMO

The ability to protect refined metals from reactive environments is vital to many industrial and academic applications. Current solutions, however, typically introduce several negative effects, including increased thickness and changes in the metal physical properties. In this paper, we demonstrate for the first time the ability of graphene films grown by chemical vapor deposition to protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy from air oxidation. In particular, graphene prevents the formation of any oxide on the protected metal surfaces, thus allowing pure metal surfaces only one atom away from reactive environments. SEM, Raman spectroscopy, and XPS studies show that the metal surface is well protected from oxidation even after heating at 200 °C in air for up to 4 h. Our work further shows that graphene provides effective resistance against hydrogen peroxide. This protection method offers significant advantages and can be used on any metal that catalyzes graphene growth.


Assuntos
Ligas/química , Cobre/química , Grafite/química , Níquel/química , Carbono/química , Condutividade Elétrica , Peróxido de Hidrogênio/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Temperatura , Volatilização
9.
J Am Chem Soc ; 133(9): 2816-9, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21309560

RESUMO

Graphene single crystals with dimensions of up to 0.5 mm on a side were grown by low-pressure chemical vapor deposition in copper-foil enclosures using methane as a precursor. Low-energy electron microscopy analysis showed that the large graphene domains had a single crystallographic orientation, with an occasional domain having two orientations. Raman spectroscopy revealed the graphene single crystals to be uniform monolayers with a low D-band intensity. The electron mobility of graphene films extracted from field-effect transistor measurements was found to be higher than 4000 cm(2) V(-1) s(-1) at room temperature.

10.
J Struct Biol ; 174(1): 234-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20937392

RESUMO

This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast. However, in a practical illustration of the new substrates properties, positively stained DNA is imaged across pristine graphene in striking contrast without the need of metal shadowing. We go onto discuss technical considerations and the potential applications of pristine graphene substrates as well as their ongoing development.


Assuntos
Grafite/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia
11.
ACS Nano ; 5(1): 321-8, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21162551

RESUMO

Using micro-Raman spectroscopy, the thermal conductivity of a graphene monolayer grown by chemical vapor deposition and suspended over holes with different diameters ranging from 2.9 to 9.7 µm was measured in vacuum, thereby eliminating errors caused by heat loss to the surrounding gas. The obtained thermal conductivity values of the suspended graphene range from (2.6 ± 0.9) to (3.1 ± 1.0) × 10(3) Wm(-1)K(-1) near 350 K without showing the sample size dependence predicted for suspended, clean, and flat graphene crystal. The lack of sample size dependence is attributed to the relatively large measurement uncertainty as well as grain boundaries, wrinkles, defects, or polymeric residue that are possibly present in the measured samples. Moreover, from Raman measurements performed in air and CO(2) gas environments near atmospheric pressure, the heat transfer coefficient for air and CO(2) was determined and found to be (2.9 +5.1/-2.9) and (1.5 +4.2/-1.5) × 10(4) Wm(-2)K(-1), respectively, when the graphene temperature was heated by the Raman laser to about 510 K.

12.
Nano Lett ; 10(11): 4328-34, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20957985

RESUMO

The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16,000 cm(2) V(-1) s(-1) at room temperature.


Assuntos
Cristalização/métodos , Gases/química , Grafite/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
13.
ACS Nano ; 4(1): 540-6, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20055476

RESUMO

There has been no attempt to date to specifically modify the nodes in carbon nanotube (CNT) networks. If the nodes can be modified in favorable ways, the electrical and/or thermal and/or mechanical properties of the CNT networks could be improved. In an attempt to influence the performance as a transparent conductive film, gold nanoparticles capped with the amino acid cysteine (Au-CysNP) have been selectively attached at the nodes of multiwalled carbon nanotubes (MWCNTs) networks. These nanoparticles have an average diameter of 5 nm as observed by TEM. FTIR and XPS were used to characterize each step of the MWCNT chemical functionalization process. The chemical process was designed to favor selective attachment at the nodes and not the segments in the CNT networks. The chemical processing was designed to direct formation of nodes where the gold nanoparticles are. The nanoparticles which were loosely held in the CNT network could be easily washed away by solvents, while those bound chemically remained. TEM results show that the Cys-AuNPs are preferentially located at the nodes of the CNT networks when compared to the segments. These nanoparticles at the nodes were also characterized by a novel technique called diffraction scanning transmission electron microscopy (D-STEM) confirming their identity. Four-probe measurements found that the sheet resistance of the modified CNT networks was half that of similarly transparent pristine multiwalled CNT networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA