RESUMO
Background: Group 2 innate lymphoid cells (ILC2) can be activated by interleukin (IL)-33 or IL-25. IL-25-activated ILC2 cells help protect the host against helminth infection while exacerbating allergic-like inflammation and tissue damage in the lung. In the context of cancer, IL-33-activated ILC2 cells were found to bear anti-tumoral functions in lung cancer while IL-25-activated ILC2 cells promoted tumorigenesis in colorectal cancer. The role of IL-25-activated ILC2 cells in lung cancer remains to be addressed. Methods: We examined the overall survival of human non-small cell lung cancer (NSCLC) patients according to IL25 expression as well as the distribution of ILC2 cells and regulatory T cells (Tregs) in various NSCLC patient tissues and peripheral blood (PB) of healthy donors (HDs). We analyzed the effect of adoptive transfer of IL-25-activated ILC2 cells on tumor growth, metastasis and survival in a heterotopic murine model of lung cancer. Results: We report that human NSCLC patients with high IL-25 expression have reduced overall survival. Moreover, NSCLC patients bear increased frequencies of ILC2s compared to HDs. Frequencies of Tregs were also increased in NSCLC patients, concomitantly with ILC2s. In mice bearing heterotopic lung cancer, adoptive transfer of IL-25-activated ILC2s led to increased tumor growth, increased metastasis and reduced survival. The frequencies of monocytic myeloid-derived suppressor cells (M-MDSCs) were found to be increased in the tumors of mice that received ILC2s as compared to controls. Conclusion: Overall, our results indicate that the IL-25/ILC2 axis promotes lung cancer potentially by recruiting immune-suppressive cells to the tumors both in humans and in mice, and that it may therefore represent a suitable novel target for NSCLC immunotherapeutic development.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Imunidade Inata , Neoplasias Pulmonares/metabolismo , Linfócitos/metabolismoRESUMO
Although the first cancer immunotherapy was given in the clinic more than a century ago, this line of treatment has remained more of a distant goal than a practical therapy due to limited understanding of the tumour microenvironment and the mechanisms at play within it, which led to failures of numerous clinical trials. However, in the last two decades, the immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T cell therapies have revolutionized the treatment of cancer and provided proof-of-concept that immunotherapies are a viable option. So far, immunotherapies have majoritarily focused on utilizing T cells; however, T cells are not autonomous but rather function as part of, and therefore are influenced by, a vast cast of other immune cells, including innate lymphoid cells (ILCs). Here, we summarize the role of ILCs, especially helper ILCs, in tumour development, progression and metastasis, as well as their potential to be used as immunotherapy for cancer. By reviewing the studies that used helper ILCs as adoptive cell therapy (ACT), we highlight the rationale behind considering these cells as novel ACT for cancer as well as identify open questions and areas for future research.
Assuntos
Linfócitos , Neoplasias , Humanos , Imunidade Inata , Neoplasias/patologia , Linfócitos T/metabolismo , Imunoterapia , Microambiente TumoralRESUMO
BACKGROUND & AIMS: Disruption of the enteric glial cell (EGC) network is an early pathologic feature in Crohn's disease. To determine the contribution of antigen-specific CD8 and CD4 T cells to the breakdown of the EGC network, we studied specific autoimmune targeting of an ectopic antigen expressed by EGCs. METHODS: Transgenic mice (GFAP-HA), which express the influenza hemagglutinin (HA) in EGCs, were either crossed with mice transgenic for a T-cell receptor (TCR) specific for a major histocompatibility complex (MHC) class I epitope of HA (CL4-TCR) or were adoptively transferred with conventional CL4 T cells. These were compared with GFAP-HA mice transferred with conventional T cells specific for an MHC class II epitope of HA (6.5). RESULTS: Both CD8 and CD4 T-cell subtypes were activated in vivo in an antigen-specific manner; however, they differed substantially in their ability to expand in the mesenteric lymph nodes, trigger proinflammatory cytokines, and induce autoimmune damage in the intestine. Direct presentation of antigen, provided by lymph node stromal cells, caused the activation and deletion of CD8 T cells. This mechanism of T-cell tolerance did not affect CD4 T cells, which produced antigen-specific lethal autoimmunity. CONCLUSIONS: Our observations support a recently identified mechanism of peripheral T-cell tolerance that specifically protects against autoimmunity mediated by conventional CD8 T cells. Furthermore, we show that conventional CD4 T cells are not affected by this mechanism of tolerance, and their targeting of EGCs produces lethal intestinal autoimmunity.