Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Immunol ; 7(78): eadd0665, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563168

RESUMO

TNF mediates a variety of biological processes including cellular proliferation, inflammatory responses, and cell death and is therefore associated with numerous pathologies including autoinflammatory diseases and septic shock. The inflammatory and cell death responses to TNF have been studied extensively downstream of TNF-R1 and are believed to rely on the formation of proinflammatory complex I and prodeath complex II, respectively. We recently identified a similar multimeric complex downstream of TLR4, termed the TRIFosome, that regulates inflammation and cell death in response to LPS or Yersinia pseudotuberculosis. We present evidence of a role for the TRIFosome downstream of TNF-R1, independent of TLR3 or TLR4 engagement. Specifically, TNF-induced cell death and inflammation in murine macrophages were driven by the TLR4 adaptor TRIF and the LPS co-receptor CD14, highlighting an important role for these proteins beyond TLR-mediated immune responses. Via immunoprecipitation and visualization of TRIF-specific puncta, we demonstrated TRIF- and CD14-dependent formation of prodeath and proinflammatory complexes in response to TNF. Extending these findings, in a murine TNF-induced sepsis model, TRIF and CD14 deficiency decreased systemic inflammation, reduced organ pathology, and improved survival. The outcome of TRIF activation was cell specific, because TNF-induced lethality was mediated by neutrophils and macrophages responding to TNF in a TRIF-dependent manner. Our findings suggest that in addition to their crucial role in TNF production, myeloid cells are central to TNF toxicity and position TRIF and CD14 as universal components of receptor-mediated immune responses.


Assuntos
Neutrófilos , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Inflamação/metabolismo , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Macrófagos , Neutrófilos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like , Fatores de Necrose Tumoral/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(24): e2113872119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666872

RESUMO

ZBP1 is widely recognized as a mediator of cell death for its role in initiating necroptotic, apoptotic, and pyroptotic cell death pathways in response to diverse pathogenic infection. Herein, we characterize an unanticipated role for ZBP1 in promoting inflammatory responses to bacterial lipopolysaccharide (LPS) or double-stranded RNA (dsRNA). In response to both stimuli, ZBP1 promotes the timely delivery of RIPK1 to the Toll-like receptor (TLR)3/4 adaptor TRIF and M1-ubiquitination of RIPK1, which sustains activation of inflammatory signaling cascades downstream of RIPK1. Strikingly, ZBP1-mediated regulation of these pathways is important in vivo, as Zbp1−/− mice exhibited resistance to LPS-induced septic shock, revealed by prolonged survival and delayed onset of hypothermia due to decreased inflammatory responses and subsequent cell death. Further findings revealed that ZBP1 promotes sustained inflammatory responses by mediating the kinetics of proinflammatory "TRIFosome" complex formation, thus having a profound impact downstream of TLR activation. Given the well-characterized role of ZBP1 as a viral sensor, our results exemplify previously unappreciated crosstalk between the pathways that regulate host responses to bacteria and viruses, with ZBP1 acting as a crucial bridge between the two.


Assuntos
Inflamação , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Nat Commun ; 12(1): 86, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397971

RESUMO

Inflammation and cell death are closely linked arms of the host immune response to infection, which when carefully balanced ensure host survival. One example of this balance is the tightly regulated transition from TNFR1-associated pro-inflammatory complex I to pro-death complex II. By contrast, here we show that a TRIF-dependent complex containing FADD, RIPK1 and caspase-8 (that we have termed the TRIFosome) mediates cell death in response to Yersinia pseudotuberculosis and LPS. Furthermore, we show that constitutive binding between ZBP1 and RIPK1 is essential for the initiation of TRIFosome interactions, caspase-8-mediated cell death and inflammasome activation, thus positioning ZBP1 as an effector of cell death in the context of bacterial blockade of pro-inflammatory signaling. Additionally, our findings offer an alternative to the TNFR1-dependent model of complex II assembly, by demonstrating pro-death complex formation reliant on TRIF signaling.


Assuntos
Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Yersinia
5.
Cytokine ; 136: 155254, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32836028

RESUMO

The D1 domain of the CD4 co-receptor interacts with MHC class II during Helper CD4+ Th-cell activation and effector function in all gnathostomes but the sequence and structure of this region are not well conserved through phylogeny. Conversely, the proximal D4 domain of CD4 is the binding site of the cytokine IL-16 and is highly conserved, allowing for promiscuous binding of IL-16 to CD4 between disparate gnathostomes. We report here that recombinant human IL-16 (rhIL-16) bound to Xenopus lymphocytes to allow separation on a magnetic column. Incubation with rhIL-16 resulted in an increased expression of MHC class II mRNA by Xenopus CD8- cells more than by CD8+ cells. An in vivo assay demonstrated that rhIL-16 can recruit lymphocytes of Xenopus frogs. Our data suggest that a subset of Xenopus laevis lymphocytes express a CD4 homolog on their surface that is capable of binding IL-16. These results imply that CD4 most likely arose from a primordial cytokine receptor.


Assuntos
Antígenos CD4/imunologia , Evolução Molecular , Interleucina-16/farmacologia , Linfócitos/imunologia , Proteínas de Xenopus/imunologia , Animais , Humanos , Interleucina-16/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Xenopus laevis
6.
Science ; 367(6484): 1379-1384, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193329

RESUMO

Cell death and inflammation are interdependent host responses to infection. During pyroptotic cell death, interleukin-1ß (IL-1ß) release occurs through caspase-1 and caspase-11-mediated gasdermin D pore formation. In vivo, responses to lipopolysaccharide (LPS) result in IL-1ß secretion. In vitro, however, murine macrophages require a second "danger signal" for the inflammasome-driven maturation of IL-1ß. Recent reports have shown caspase-8-mediated pyroptosis in LPS-activated macrophages but have provided conflicting evidence regarding the release of IL-1ß under these conditions. Here, to further characterize the mechanism of LPS-induced secretion in vitro, we reveal an important role for cellular FLICE-like inhibitory protein (cFLIP) in the regulation of the inflammatory response. Specifically, we show that deficiency of the long isoform cFLIPL promotes complex II formation, driving pyroptosis, and the secretion of IL-1ß in response to LPS alone.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/fisiologia , Complexo II de Transporte de Elétrons/metabolismo , Inflamassomos/metabolismo , Ativação de Macrófagos , Macrófagos/fisiologia , Piroptose , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 1/metabolismo , Caspase 8/metabolismo , Técnicas de Silenciamento de Genes , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA