Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 109(4): 616-627, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075632

RESUMO

PREMISE: Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing. We investigated changes in stigma events, autonomous selfing, outcross seed set capacity, and autofertility-a measure representing the potential for reproductive assurance-across floral lifespan in the mixed-mating biennial Sabatia angularis. METHODS: We examined stigma morphology and receptivity, autonomous self-pollen deposition, and seed number and size under autonomous self-pollination and hand outcross-pollination for flowers of different ages, from 1 d of female phase until 14 d. We compared autonomous seed production to maximal outcross seed production at each flower age to calculate an index of autofertility. RESULTS: The stigmatic lobes begin to untwist 1 d post anthesis. They progressively open, sextend, coil, and increase in receptivity, peaking or saturating at 8-11 d, depending on the measure. Autonomous seed production can occur early, but on average remains low until 6 d, when it doubles. In contrast, outcross seed number and size start out high, then decline precipitously. Consequently, autofertility increases steeply across floral lifespan. CONCLUSIONS: Changes in stigma morphology and receptivity, timing of autonomous self-pollen deposition, and floral senescence can interact to influence the relative benefit of autonomous selfing across floral lifespan. Our work highlights the interplay between evolution of floral longevity and the mating system, with implications for the maintenance of mixed mating in S. angularis.


Assuntos
Gentianaceae , Longevidade , Flores/anatomia & histologia , Polinização , Reprodução
2.
Nat Ecol Evol ; 5(9): 1213-1223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373620

RESUMO

Racial and ethnic discrimination persist in science, technology, engineering and mathematics fields, including ecology, evolution and conservation biology (EECB) and related disciplines. Marginalization and oppression as a result of institutional and structural racism continue to create barriers to inclusion for Black people, Indigenous people and people of colour (BIPOC), and remnants of historic racist policies and pseudoscientific theories continue to plague these fields. Many academic EECB departments seek concrete ways to improve the climate and implement anti-racist policies in their teaching, training and research activities. We present a toolkit of evidence-based interventions for academic EECB departments to foster anti-racism in three areas: in the classroom; within research laboratories; and department wide. To spark restorative discussion and action in these areas, we summarize EECB's racist and ethnocentric histories, as well as current systemic problems that marginalize non-white groups. Finally, we present ways that EECB departments can collectively address shortcomings in equity and inclusion by implementing anti-racism, and provide a positive model for other departments and disciplines.


Assuntos
Racismo , Negro ou Afro-Americano , Ecologia , Engenharia , Humanos , Grupos Populacionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA