Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biosci Rep ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747277

RESUMO

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors.  Methods: Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections.

 Results: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared to kidney but above background) positive staining was also detected for SGLT-2.

 Discussion: Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.

2.
Front Pharmacol ; 15: 1369489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655187

RESUMO

Introduction: Pulmonary arterial hypertension (PAH) is characterised by endothelial dysfunction and pathological vascular remodelling, resulting in the occlusion of pulmonary arteries and arterioles, right ventricular hypertrophy, and eventually fatal heart failure. Targeting the apelin receptor with the novel, G protein-biased peptide agonist, MM07, is hypothesised to reverse the developed symptoms of elevated right ventricular systolic pressure and right ventricular hypertrophy. Here, the effects of MM07 were compared with the clinical standard-of-care endothelin receptor antagonist macitentan. Methods: Male Sprague-Dawley rats were randomised and treated with either normoxia/saline, or Sugen/hypoxia (SuHx) to induce an established model of PAH, before subsequent treatment with either saline, macitentan (30 mg/kg), or MM07 (10 mg/kg). Rats were then anaesthetised and catheterised for haemodynamic measurements, and tissues collected for histopathological assessment. Results: The SuHx/saline group presented with significant increases in right ventricular hypertrophy, right ventricular systolic pressure, and muscularization of pulmonary arteries compared to normoxic/saline controls. Critically, MM07 was as at least as effective as macitentan in significantly reversing detrimental structural and haemodynamic changes after 4 weeks of treatment. Discussion: These results support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.

3.
Cardiovasc Res ; 119(17): 2683-2696, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37956047

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.


Assuntos
Apelina , Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Coração
4.
Front Endocrinol (Lausanne) ; 14: 1139121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967803

RESUMO

Introduction: The apelin receptor binds two distinct endogenous peptides, apelin and ELA, which act in an autocrine/paracrine manner to regulate the human cardiovascular system. As a class A GPCR, targeting the apelin receptor is an attractive therapeutic strategy. With improvements in imaging techniques, and the stability and brightness of dyes, fluorescent ligands are becoming increasingly useful in studying protein targets. Here, we describe the design and validation of four novel fluorescent ligands; two based on [Pyr1]apelin-13 (apelin488 and apelin647), and two based on ELA-14 (ELA488 and ELA647). Methods: Fluorescent ligands were pharmacologically assessed using radioligand and functional in vitro assays. Apelin647 was validated in high content imaging and internalisation studies, and in a clinically relevant human embryonic stem cell-derived cardiomyocyte model. Apelin488 and ELA488 were used to visualise apelin receptor binding in human renal tissue. Results: All four fluorescent ligands retained the ability to bind and activate the apelin receptor and, crucially, triggered receptor internalisation. In high content imaging studies, apelin647 bound specifically to CHO-K1 cells stably expressing apelin receptor, providing proof-of-principle for a platform that could screen novel hits targeting this GPCR. The ligand also bound specifically to endogenous apelin receptor in stem cell-derived cardiomyocytes. Apelin488 and ELA488 bound specifically to apelin receptor, localising to blood vessels and tubules of the renal cortex. Discussion: Our data indicate that the described novel fluorescent ligands expand the pharmacological toolbox for studying the apelin receptor across multiple platforms to facilitate drug discovery.


Assuntos
Hormônios Peptídicos , Cricetinae , Animais , Humanos , Receptores de Apelina/metabolismo , Ligantes , Hormônios Peptídicos/metabolismo , Cricetulus , Ligação Proteica
5.
Cardiovasc Res ; 119(2): 587-598, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36239923

RESUMO

AIMS: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease. METHODS AND RESULTS: Expression of the apelin receptor and its ligands in hESCs and hESC-CMs was determined. hESCs carrying a tetracycline-inducible short hairpin RNA targeting the apelin receptor were generated using the sOPTiKD system. Phenotypic assays characterized the consequences of either apelin receptor knockdown before hESC-CM differentiation (early knockdown) or in 3D engineered heart tissues as a disease model (late knockdown). hESC-CMs expressed the apelin signalling system at a similar level to the adult heart. Early apelin receptor knockdown decreased cardiomyocyte differentiation efficiency and prolonged voltage sensing, associated with asynchronous contraction. Late apelin receptor knockdown had detrimental consequences on 3D engineered heart tissue contractile properties, decreasing contractility and increasing stiffness. CONCLUSIONS: We have successfully knocked down the apelin receptor, using an inducible system, to demonstrate a key role in hESC-CM differentiation. Knockdown in 3D engineered heart tissues recapitulated the phenotype of apelin receptor down-regulation in a failing heart, providing a potential platform for modelling heart failure and testing novel therapeutic strategies.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Adulto , Humanos , Miócitos Cardíacos/metabolismo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular
6.
J Interv Cardiol ; 2022: 9154048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262459

RESUMO

Objective: Coronary microvascular dysfunction (CMD) can complicate successful percutaneous coronary intervention (PCI). The potent endogenous vasoconstrictor peptide Endothelin-1 (ET-1) may be an important mediator. To investigate the mechanism, we sought to define the peri-procedural trans-myocardial gradient (TMG-coronary sinus minus aortic root levels) of ET-1 and its precursor peptide - Big ET-1. We then assessed correlation with pressure-wire indices of CMD: coronary flow reserve (CFR) and index of microvascular resistance (IMR). Methods: Paired blood samples from the guide catheter and coronary sinus were collected before and after pressure-wire-guided PCI from patients with stable angina. Plasma was analysed using a specific enzyme-linked immunosorbent assay for quantification of ET-1 peptides and correlated with pressure-wire data. Non normally distributed continuous variables are presented as median [IQR]. Results: ET-1 and Big ET-1 increased post-PCI in the aorta (ET-1: 0.98 [0.76-1.26] pg/ml to 1.20 [1.03-1.67] pg/ml, P < 0.001 and Big ET-1: 2.74 [1.78-2.50] pg/ml to 3.36 [2.33-3.97] pg/ml, P < 0.001) and coronary sinus (ET-1: 1.00 [0.81-1.28] pg/ml to 1.09 [0.91-1.30] pg/ml, P = 0.03 and Big ET-1: 2.89 [1.95-3.83] pg/ml to 3.56 [2.66-4.83] pg/ml, P = 0.01). TMG of ET-1 shifted negatively compared with baseline following PCI reflecting significantly increased extraction (0.03 [-0.12-0.17] pg/ml pre-PCI versus -0.16 [-0.36-0.07] pg/ml post-PCI, P = 0.01). Increased ET-1 trans-myocardial extraction correlated with higher IMR (Pearson's r = 0.293, P = 0.02) and increased hyperemic transit time (Pearson's r = 0.333, P < 0.01). In subgroup analysis, mean ET-1 trans-myocardial extraction was higher amongst patients with high IMR compared with low IMR (0.73 pg/ml, SD:0.78 versus 0.17 pg/ml, SD:0.42, P = 0.02). There was additionally a numerical trend towards increased ET-1 trans-myocardial extraction in subgroups of patients with low CFR and in patients with Type 4a Myocardial Infarction, albeit not reaching statistical significance. Conclusions: Circulating ET-1 increases post-PCI and upregulated ET-1 trans-myocardial extraction contributes to increased microcirculatory resistance.


Assuntos
Angina Estável , Intervenção Coronária Percutânea , Humanos , Microcirculação , Endotelina-1 , Vasoconstritores , Resistência Vascular , Circulação Coronária
7.
Br J Clin Pharmacol ; 88(12): 5295-5306, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35748053

RESUMO

AIMS: Chronic kidney disease (CKD) is common and cardiovascular disease (CVD) is its commonest complication. The apelin system is a potential therapeutic target for CVD but data relating to apelin in CKD are limited. We examined expression of the apelin system in human kidney, and investigated apelin and Elabela/Toddler (ELA), the endogenous ligands for the apelin receptor, in patients with CKD. METHODS: Using autoradiography, immunohistochemistry and enzyme-linked immunosorbent assay, we assessed expression of apelin, ELA and the apelin receptor in healthy human kidney, and measured plasma apelin and ELA in 155 subjects (128 patients with CKD, 27 matched controls) followed up for 5 years. Cardiovascular assessments included blood pressure, arterial stiffness (pulse wave velocity) and brachial artery flow-mediated dilation. Surrogate markers of endothelial function (plasma asymmetric dimethylarginine and endothelin-1) and inflammation (C-reactive protein and interleukin-6) were measured. RESULTS: The apelin system was expressed in healthy human kidney, throughout the nephron. Plasma apelin concentrations were 60% higher in women than men (6.48 [3.62-9.89] vs. 3.95 [2.02-5.85] pg/mL; P < .0001), and increased as glomerular filtration rate declined (R = -0.41, P < .0001), and albuminuria rose (R = 0.52, P < .0001). Plasma apelin and ELA were associated with vascular dysfunction. Plasma apelin associated independently with a 50% decline in glomerular filtration rate at 5 years. CONCLUSION: We show for the first time that the apelin system is expressed in healthy human kidney. Plasma apelin is elevated in CKD and may be a potential biomarker of risk of decline in kidney function. Clinical studies exploring the therapeutic potential of apelin agonism in CKD are warranted.


Assuntos
Doenças Cardiovasculares , Hormônios Peptídicos , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Apelina , Receptores de Apelina/metabolismo , Análise de Onda de Pulso , Hormônios Peptídicos/metabolismo , Rim , Biomarcadores
8.
J Mol Cell Cardiol ; 167: 92-96, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339512

RESUMO

Virus induced endothelial dysregulation is a well-recognised feature of severe Covid-19 infection. Endothelin-1 (ET-1) is the most highly expressed peptide in endothelial cells and a potent vasoconstrictor, thus representing a potential therapeutic target. ET-1 plasma levels were measured in a cohort of 194 Covid-19 patients stratified according to the clinical severity of their illness. Hospitalised patients, including those who died and those developing acute myocardial or kidney injury, had significantly elevated ET-1 plasma levels during the acute phase of infection. The results support the hypothesis that endothelin receptor antagonists may provide clinical benefit for certain Covid-19 patients.


Assuntos
COVID-19 , Endotelina-1 , Células Endoteliais , Antagonistas dos Receptores de Endotelina , Humanos , Receptor de Endotelina A , Receptores de Endotelina , Vasoconstritores
9.
Sci Rep ; 11(1): 24336, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934117

RESUMO

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Ductos Biliares/metabolismo , Ductos Biliares/virologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
10.
Nat Rev Nephrol ; 17(12): 840-853, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34389827

RESUMO

Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Apelina/metabolismo , Receptores de Apelina/metabolismo , Humanos , Ligantes , Insuficiência Renal Crônica/tratamento farmacológico , Sistema Renina-Angiotensina
11.
Peptides ; 145: 170642, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455010

RESUMO

BACKGROUND: Elabela/Toddler (ELA) is a novel endogenous ligand of the apelin receptor, whose signalling has emerged as a therapeutic target, for example, in cardiovascular disease and cancer. Shorter forms of ELA-32 have been predicted, including ELA-21 and ELA-11, but metabolism and stability of ELA-32 in humans is poorly understood. We, therefore, developed an LC-MS/MS assay to identify ELA-32 metabolites in human plasma and tissues. METHOD: Human kidney homogenates or plasma were incubated at 37 °C with ELA-32 and aliquots withdrawn over 2-4 h into guanidine hydrochloride. Proteins were precipitated and supernatant solid-phase extracted. Peptides were extracted from coronary artery, brain and kidney by immunoprecipitation or solid-phase extraction following acidification. All samples were reduced and alkylated before analysis on an Orbitrap mass spectrometer in high and nano flow mode. RESULTS: The half-life of ELA-32 in plasma and kidney were 47.2 ±â€¯5.7 min and 44.2 ±â€¯3 s, respectively. Using PEAKS Studio and manual data analysis, the most important fragments of ELA-32 with potential biological activity identified were ELA-11, ELA-16, ELA-19 and ELA-20. The corresponding fragments resulting from the loss of C-terminal amino acids were also identified. Endogenous levels of these peptides could not be measured, as ELA peptides are prone to oxidation and poor chromatographic peaks. CONCLUSIONS: The relatively long ELA plasma half-life observed and identification of a potentially more stable fragment, ELA-16, may suggest that ELA could be a better tool compound and novel template for the development of new drugs acting at the apelin receptor.


Assuntos
Rim/metabolismo , Hormônios Peptídicos/metabolismo , Espectrometria de Massas em Tandem/métodos , Análise Química do Sangue/métodos , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/sangue , Hormônios Peptídicos/isolamento & purificação , Isoformas de Proteínas/sangue , Isoformas de Proteínas/metabolismo , Estabilidade Proteica
12.
Commun Biol ; 4(1): 926, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326460

RESUMO

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/virologia , SARS-CoV-2/fisiologia , Benzotropina/farmacologia , Humanos , Miócitos Cardíacos/citologia , Peptídeos/farmacologia
13.
Peptides ; 136: 170440, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171278

RESUMO

BACKGROUND: The peptide apelin is expressed in human healthy livers and is implicated in the development of hepatic fibrosis and cirrhosis. Mutations in the bone morphogenetic protein receptor type II (BMPR-II) result in reduced plasma levels of apelin in patients with heritable pulmonary arterial hypertension. Ligands for BMPR-II include bone morphogenetic protein 9 (BMP9), highly expressed in liver, and BMP10, expressed in heart and to a lesser extent liver. However, it is not known whether reductions in BMP9 and/or BMP10, with associated reduction in BMPR-II signalling, correlate with altered levels of apelin in patients with liver fibrosis and cirrhosis. METHODS: Plasma from patients with liver fibrosis (n = 14), cirrhosis (n = 56), and healthy controls (n = 25) was solid-phase extracted using a method optimised for recovery of apelin, which was measured by ELISA. RESULTS: Plasma apelin was significantly reduced in liver fibrosis (8.3 ± 1.2 pg/ml) and cirrhosis (6.5 ± 0.6 pg/ml) patients compared with controls (15.4 ± 2.0 pg/ml). There was no obvious relationship between apelin and BMP 9 or BMP10 previously measured in these patients. Within the cirrhotic group, there was no significant correlation between apelin levels and disease severity scores, age, sex, or treatment with ß-blockers. CONCLUSIONS: Apelin was significantly reduced in plasma of patients with both early (fibrosis) and late-stage (cirrhosis) liver disease. Fibrosis is more easily reversible and may represent a potential target for new therapeutic interventions. However, it remains unclear whether apelin signalling is detrimental in liver disease or is beneficial and therefore, whether an apelin antagonist or agonist have clinical use.


Assuntos
Apelina/sangue , Proteínas Morfogenéticas Ósseas/sangue , Fibrose/sangue , Fator 2 de Diferenciação de Crescimento/sangue , Cirrose Hepática/sangue , Adulto , Idoso , Feminino , Fibrose/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade
15.
Nat Rev Drug Discov ; 19(6): 389-413, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494050

RESUMO

Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.


Assuntos
Desenho de Fármacos , Peptídeos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Terapia de Alvo Molecular , Biblioteca de Peptídeos , Peptídeos/farmacocinética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Ligação Proteica , Transdução de Sinais
16.
Br J Pharmacol ; 177(21): 4942-4966, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32358833

RESUMO

In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid-term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti-SARS-CoV-2 agents. This longer term strategy would provide a deeper pool of drug choices for future-proofing against acquired drug resistance. Second, there will be further viral threats, which will inevitably evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and pharmacologists are best placed to provide. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Animais , Antivirais/farmacologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
17.
Eur Heart J ; 41(34): 3239-3252, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31972008

RESUMO

AIMS: Endothelin-1 (ET-1) is a potent vasoconstrictor peptide linked to vascular diseases through a common intronic gene enhancer [(rs9349379-G allele), chromosome 6 (PHACTR1/EDN1)]. We performed a multimodality investigation into the role of ET-1 and this gene variant in the pathogenesis of coronary microvascular dysfunction (CMD) in patients with symptoms and/or signs of ischaemia but no obstructive coronary artery disease (CAD). METHODS AND RESULTS: Three hundred and ninety-one patients with angina were enrolled. Of these, 206 (53%) with obstructive CAD were excluded leaving 185 (47%) eligible. One hundred and nine (72%) of 151 subjects who underwent invasive testing had objective evidence of CMD (COVADIS criteria). rs9349379-G allele frequency was greater than in contemporary reference genome bank control subjects [allele frequency 46% (129/280 alleles) vs. 39% (5551/14380); P = 0.013]. The G allele was associated with higher plasma serum ET-1 [least squares mean 1.59 pg/mL vs. 1.28 pg/mL; 95% confidence interval (CI) 0.10-0.53; P = 0.005]. Patients with rs9349379-G allele had over double the odds of CMD [odds ratio (OR) 2.33, 95% CI 1.10-4.96; P = 0.027]. Multimodality non-invasive testing confirmed the G allele was associated with linked impairments in myocardial perfusion on stress cardiac magnetic resonance imaging at 1.5 T (N = 107; GG 56%, AG 43%, AA 31%, P = 0.042) and exercise testing (N = 87; -3.0 units in Duke Exercise Treadmill Score; -5.8 to -0.1; P = 0.045). Endothelin-1 related vascular mechanisms were assessed ex vivo using wire myography with endothelin A receptor (ETA) antagonists including zibotentan. Subjects with rs9349379-G allele had preserved peripheral small vessel reactivity to ET-1 with high affinity of ETA antagonists. Zibotentan reversed ET-1-induced vasoconstriction independently of G allele status. CONCLUSION: We identify a novel genetic risk locus for CMD. These findings implicate ET-1 dysregulation and support the possibility of precision medicine using genetics to target oral ETA antagonist therapy in patients with microvascular angina. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03193294.


Assuntos
Doença da Artéria Coronariana , Angina Microvascular , Isquemia Miocárdica , Doença da Artéria Coronariana/genética , Endotelina-1/genética , Humanos , Angina Microvascular/genética , Vasoconstrição
18.
Front Pharmacol ; 11: 588669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33716722

RESUMO

Signaling through the apelin receptor is beneficial for a number of diseases including pulmonary arterial hypertension. The endogenous small peptides, apelin and elabela/toddler, are downregulated in pulmonary arterial hypertension but are not suitable for exogenous administration owing to a lack of bioavailability, proteolytic instability and susceptibility to renal clearance. CMF-019, a small molecule apelin agonist that displays strong bias towards G protein signaling over ß-arrestin (∼400 fold), may be more suitable. This study demonstrates that in addition to being a positive inotrope, CMF-019 caused dose-dependent vasodilatation in vivo (50 nmol 4.16 ± 1.18 mmHg, **p < 0.01; 500 nmol 6.62 ± 1.85 mmHg, **p < 0.01), without receptor desensitization. Furthermore, CMF-019 rescues human pulmonary artery endothelial cells from apoptosis induced by tumor necrosis factor α and cycloheximide (5.66 ± 0.97%, **p < 0.01) by approximately 50% of that observable with rhVEGF (11.59 ± 1.85%, **p < 0.01), suggesting it has disease-modifying potential in vitro. CMF-019 displays remarkable bias at the apelin receptor for a small molecule and importantly recapitulates all aspects of the cardiovascular responses to the endogenous ligand, [Pyr1]apelin-13, in vivo. Additionally, it is able to protect human pulmonary artery endothelial cells from apoptosis, suggesting that the beneficial effects observed with apelin agonists extend beyond hemodynamic alleviation and address disease etiology itself. These findings support CMF-019 as a G protein biased small molecule apelin agonist in vitro and in vivo that could form the basis for the design of novel therapeutic agents in chronic diseases, such as, pulmonary arterial hypertension.

19.
Basic Clin Pharmacol Toxicol ; 126 Suppl 6: 96-103, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30901161

RESUMO

The apelin receptor is a potential target in the treatment of heart failure and pulmonary arterial hypertension where levels of endogenous apelin peptides are reduced but significant receptor levels remain. Our aim was to characterise the pharmacology of a modified peptide agonist, MM202, designed to have high affinity for the apelin receptor and resistance to peptidase degradation and linked to an anti-serum albumin domain antibody (AlbudAb) to extend half-life in the blood. In competition, binding experiments in human heart MM202-AlbudAb (pKi  = 9.39 ± 0.09) bound with similar high affinity as the endogenous peptides [Pyr1 ]apelin-13 (pKi  = 8.83 ± 0.06) and apelin-17 (pKi  = 9.57 ± 0.08). [Pyr1 ]apelin-13 was tenfold more potent in the cAMP (pD2  = 9.52 ± 0.05) compared to the ß-arrestin (pD2  = 8.53 ± 0.03) assay, whereas apelin-17 (pD2  = 10.31 ± 0.28; pD2  = 10.15 ± 0.13, respectively) and MM202-AlbudAb (pD2  = 9.15 ± 0.12; pD2  = 9.26 ± 0.03, respectively) were equipotent in both assays, with MM202-AlbudAb tenfold less potent than apelin-17. MM202-AlbudAb bound to immobilised human serum albumin with high affinity (pKD  = 9.02). In anaesthetised, male Sprague Dawley rats, MM202-AlbudAb (5 nmol, n = 15) significantly reduced left ventricular systolic pressure by 6.61 ± 1.46 mm Hg and systolic arterial pressure by 14.12 ± 3.35 mm Hg and significantly increased cardiac contractility by 533 ± 170 mm Hg/s, cardiac output by 1277 ± 190 RVU/min, stroke volume by 3.09 ± 0.47 RVU and heart rate by 4.64 ± 2.24 bpm. This study demonstrates that conjugating an apelin mimetic peptide to the AlbudAb structure retains receptor and in vivo activity and may be a new strategy for development of apelin peptides as therapeutic agents.


Assuntos
Receptores de Apelina/agonistas , Apelina/farmacologia , Albumina Sérica/farmacologia , Animais , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G
20.
Sci Rep ; 9(1): 19934, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882594

RESUMO

[Pyr1]apelin-13 is the predominant apelin peptide isoform in the human cardiovascular system and plasma. To date, few studies have investigated [Pyr1]apelin-13 metabolism in vivo in rats with no studies examining its stability in humans. We therefore aimed to develop an LC-MS/MS method for detection and quantification of intact [Pyr1]apelin-13 and have used this method to identify the metabolites generated in vivo in humans. [Pyr1]apelin-13 (135 nmol/min) was infused into six healthy human volunteers for 120 minutes and blood collected at time 0 and 120 minutes after infusion. Plasma was extracted in the presence of guanidine hydrochloride and analysed by LC-MS/MS. Here we report a highly sensitive, robust and reproducible method for quantification of intact [Pyr1]apelin-13 and its metabolites in human plasma. Using this method, we showed that the circulating concentration of intact peptide was 58.3 ± 10.5 ng/ml after 120 minutes infusion. We demonstrated for the first time that in humans, [Pyr1]apelin-13 was cleaved from both termini but the C-terminal was more susceptible to cleavage. Consequently, of the metabolites identified, [Pyr1]apelin-13(1-12), [Pyr1]apelin-13(1-10) and [Pyr1]apelin-13(1-6) were the most abundant. These data suggest that apelin peptides designed for use as cardiovascular therapeutics, should include modifications that minimise C-terminal cleavage.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espectrometria de Massas em Tandem/métodos , Adulto , Apelina/metabolismo , Receptores de Apelina/metabolismo , Cromatografia Líquida/métodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos , Plasma/química , Isoformas de Proteínas/sangue , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA