Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 8(1): 68-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082179

RESUMO

It is typically assumed that large networks of neurons exhibit a large repertoire of nonlinear behaviours. Here we challenge this assumption by leveraging mathematical models derived from measurements of local field potentials via intracranial electroencephalography and of whole-brain blood-oxygen-level-dependent brain activity via functional magnetic resonance imaging. We used state-of-the-art linear and nonlinear families of models to describe spontaneous resting-state activity of 700 participants in the Human Connectome Project and 122 participants in the Restoring Active Memory project. We found that linear autoregressive models provide the best fit across both data types and three performance metrics: predictive power, computational complexity and the extent of the residual dynamics unexplained by the model. To explain this observation, we show that microscopic nonlinear dynamics can be counteracted or masked by four factors associated with macroscopic dynamics: averaging over space and over time, which are inherent to aggregated macroscopic brain activity, and observation noise and limited data samples, which stem from technological limitations. We therefore argue that easier-to-interpret linear models can faithfully describe macroscopic brain dynamics during resting-state conditions.


Assuntos
Encéfalo , Conectoma , Humanos , Modelos Lineares , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos
2.
Mol Psychiatry ; 28(8): 3314-3323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353585

RESUMO

Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Alprazolam/farmacologia , Emoções , Encéfalo , Tonsila do Cerebelo , Mapeamento Encefálico , Imageamento por Ressonância Magnética
3.
PLoS Comput Biol ; 18(6): e1009846, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696439

RESUMO

We introduce cytoNet, a cloud-based tool to characterize cell populations from microscopy images. cytoNet quantifies spatial topology and functional relationships in cell communities using principles of network science. Capturing multicellular dynamics through graph features, cytoNet also evaluates the effect of cell-cell interactions on individual cell phenotypes. We demonstrate cytoNet's capabilities in four case studies: 1) characterizing the temporal dynamics of neural progenitor cell communities during neural differentiation, 2) identifying communities of pain-sensing neurons in vivo, 3) capturing the effect of cell community on endothelial cell morphology, and 4) investigating the effect of laminin α4 on perivascular niches in adipose tissue. The analytical framework introduced here can be used to study the dynamics of complex cell communities in a quantitative manner, leading to a deeper understanding of environmental effects on cellular behavior. The versatile, cloud-based format of cytoNet makes the image analysis framework accessible to researchers across domains.


Assuntos
Processamento de Imagem Assistida por Computador , Células-Tronco Neurais , Processamento de Imagem Assistida por Computador/métodos , Neurônios , Análise Espaço-Temporal
4.
Sci Adv ; 8(5): eabj8750, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119918

RESUMO

Adolescence is hypothesized to be a critical period for the development of association cortex. A reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period development; however, it has been unclear how to assess the development of the E:I ratio using noninvasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate patterns of functional connectivity. In an independent sample of 879 youth (ages 8 to 22 years), this model predicted reductions in the E:I ratio during adolescence, which were specific to association cortex and related to psychopathology. These findings support hypothesized shifts in E:I balance of association cortices during a neurodevelopmental critical period in adolescence.


Assuntos
Córtex Cerebral , Neuroimagem , Adolescente , Adulto , Criança , Humanos , Imageamento por Ressonância Magnética , Adulto Jovem
5.
Neuroimage ; 241: 118408, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284108

RESUMO

Functional connectivity (FC) networks are typically inferred from resting-state fMRI data using the Pearson correlation between BOLD time series from pairs of brain regions. However, alternative methods of estimating functional connectivity have not been systematically tested for their sensitivity or robustness to head motion artifact. Here, we evaluate the sensitivity of eight different functional connectivity measures to motion artifact using resting-state data from the Human Connectome Project. We report that FC estimated using full correlation has a relatively high residual distance-dependent relationship with motion compared to partial correlation, coherence, and information theory-based measures, even after implementing rigorous methods for motion artifact mitigation. This disadvantage of full correlation, however, may be offset by higher test-retest reliability, fingerprinting accuracy, and system identifiability. FC estimated by partial correlation offers the best of both worlds, with low sensitivity to motion artifact and intermediate system identifiability, with the caveat of low test-retest reliability and fingerprinting accuracy. We highlight spatial differences in the sub-networks affected by motion with different FC metrics. Further, we report that intra-network edges in the default mode and retrosplenial temporal sub-networks are highly correlated with motion in all FC methods. Our findings indicate that the method of estimating functional connectivity is an important consideration in resting-state fMRI studies and must be chosen carefully based on the parameters of the study.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Movimento (Física) , Rede Nervosa/diagnóstico por imagem , Descanso , Encéfalo/fisiologia , Análise de Dados , Movimentos da Cabeça/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA