Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 5: e3909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29038760

RESUMO

BACKGROUND: Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., ß-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger. METHODS: In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic® CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment. RESULTS: Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-ß-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic® CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iß in the treated OPEFB samples. DISCUSSION: Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic® CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic® CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.

2.
PLoS One ; 7(11): e49788, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209600

RESUMO

Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.


Assuntos
Proteínas Anticongelantes/química , Proteínas Fúngicas/química , Fragmentos de Peptídeos/química , Leveduras/química , Sequência de Aminoácidos , Regiões Antárticas , Proteínas Anticongelantes/metabolismo , Cristalização , Proteínas Fúngicas/metabolismo , Gelo , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Soluções , Leveduras/metabolismo
3.
Curr Microbiol ; 53(5): 412-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17036210

RESUMO

We constructed recombinant phage particles displaying the Bacillus thuringiensis Cry1Ba4 active toxin using the pfUSE5 and pComb3X phagemid vectors. The recombinant phage particles were screened and evaluated for displayed biologically active Cry1Ba4 toxin against the target insect larvae. Concurrent expression of Cry1Ba4 protoxin was carried out using the pETBlue -2 plasmid expression vector in Escherichia coli Tuner (DE3)pLacI and the protoxin was successfully expressed at a size of 129 kDa. In the bioassay, 3.30 mg crude extract of Cry1Ba4 protoxin, 9.35 x 10(9) TU and 7.70 x 10(9) TU of induced recombinant phage particles carrying Cry1Ba4 active toxin displayed on pComb3X and pFUSE5, respectively, demonstrated mortality of greater than 85% against Plutella xylostella (third-instar) within 48 hours. Thus, we have successfully displayed the Cry1Ba4 activated toxin on the surface of a phage and demonstrated toxicity towards larvae.


Assuntos
Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Bacteriófagos/genética , Lepidópteros , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA