Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Libyan J Med ; 12(1): 1304505, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28385119

RESUMO

Background Zika virus (ZIKV) has been associated with a variety of neuropathologies, including microcephaly. We hypothesize that ZIKV genes activate host microRNAs (miRNAs) causing dysfunctional development of human fetal brains. Objectives/methods A bioinformatics search for miRNA genome-wide binding sites in the prototypic ZIKV (strain MR766) was undertaken to hunt for miRNAs with significant similarities with MCPH genetic sequences responsible for inducing MCHP in human fetal brains. Results Six ZIKV miRNAs were found to share mutual homology with 12 MCPH genetic sequences responsible for inducing MCPH. Noteworthy was miR-1304, which expressed 100% identity to six different MCPH genes. Conclusions We suggest that following infection of fetal neurons ZIKV may modulate the action of various miRNAs, and miR-1304 in particular, resulting in microcephaly.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , Microcefalia/genética , RNA Viral/genética , Zika virus/genética , Sítios de Ligação , Humanos , Microcefalia/virologia , RNA Viral/química , Zika virus/química
2.
J Infect Dev Ctries ; 10(8): 870-9, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27580334

RESUMO

INTRODUCTION: Coinfection with certain members of the Flaviviridae, such as Dengue Virus (DV), West Nile Virus (WNV) Yellow Fever Virus (YFV) and most importantly, GBV-C have been documented to reduce HIV-1 viral load in vivo. Numerous studies strongly support the notion that persistent coinfection with non-pathogenic virus prolongs survival in HIV-1 infected individuals. Coinfected individuals show higher CD4+ cell counts, lower HIV-1 RNA viral loads and live three times longer than clinically matched HIV-1 monoinfected patients. We have previously shown that one of the major anti-HIV defenses conferred by GBV-C coinfection is the upregulation of intracellular miRNAs in CD4+ cells that share significant mutual homologies with GBV-C and HIV-1 (>80%) genomes. METHODOLOGY: Genome-wide bioinformatics analyses were carried out to search for miRNA binding sites in mutual homologies between HIV and several members of the Flaviviridae. RESULTS: Several miRNAs shared significant mutual homology with HIV-1 genetic sequences and GBV-A, B, C, DV, WNV and YFV. These may be responsible for beneficial effects in HIV-1 infected individuals. Three highly mutual homologous miRNAs (i.e. miR-627-5, miR-369-5 and miR-548f), expressed in CD4+ cell lines, reduce HIV-1 replication by up to 90% whereas miRNAs with low mutual homologies (i.e. miR-34-1 and miR-508) impart only slight inhibition of HIV-1. CONCLUSION: We hypothesize that a recombinant GBV-C-based vector can be constructed which expresses several beneficial genetic motifs of the Flaviviridae without causing any side effects while stimulating a wide array of beneficial miRNAs that can more efficiently prevent HIV-1 infection.


Assuntos
Flaviviridae/genética , HIV-1/genética , MicroRNAs/genética , Homologia de Sequência , Interferência Viral , Sítios de Ligação , Linfócitos T CD4-Positivos/virologia , Biologia Computacional , Humanos , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA