Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Case Rep ; 12(4): 5-8, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36380991

RESUMO

Introduction: Modified tension band wiring (MTBW) using two cannulated cancellous screws which also achieve a horizontal figure of eight patterns of tension band is established as a superior fixation to using Kirschner wires for type 34-C1 fracture of the patella. We are describing a case where this method was used for failed MTBW using two Kirschner wires where an impending failure in the early post-operative period proceeded to complete bony union without any implant failure or functional deficit following a period of conservative management. Case Presentation: We are describing a 67-year-old man with type 34-C1 fracture of patella treated by MTBW using Kirschner wires and a stainless steel (SS) wire, with fixation failure after around 6 weeks, which was revised by MTBW using two vertically placed cannulated partially threaded cancellous screws and SS wire as a tension band. In the early post-operative period, a routine X-ray of the operated part showed fracture fragment separation with a slight sack in the tension band wire without any signs of implant failure. To our surprise, the fracture proceeded to complete bony union while continuing gradually increased active knee range of motion exercises. Conclusion: This case report presents how an impending failure proceeded to complete fracture healing because of dynamic compression of the fracture provided by the tension band construct.

2.
J Biol Chem ; 297(4): 101014, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358563

RESUMO

Polysaccharide lyases (PLs) are a broad class of microbial enzymes that degrade anionic polysaccharides. Equally broad diversity in their polysaccharide substrates has attracted interest in biotechnological applications such as biomass conversion to value-added chemicals and microbial biofilm removal. Unlike other PLs, Smlt1473 present in the clinically relevant Stenotrophomonas maltophilia strain K279a demonstrates a wide range of pH-dependent substrate specificities toward multiple, diverse polysaccharides: hyaluronic acid (pH 5.0), poly-ß-D-glucuronic (celluronic) acid (pH 7.0), poly-ß-D-mannuronic acid, and poly-α-L-guluronate (pH 9.0). To decode the pH-driven multiple substrate specificities and selectivity in this single enzyme, we present the X-ray structures of Smlt1473 determined at multiple pH values in apo and mannuronate-bound states as well as the tetra-hyaluronate-docked structure. Our results indicate that structural flexibility in the binding site and N-terminal loop coupled with specific substrate stereochemistry facilitates distinct modes of entry for substrates having diverse charge densities and chemical structures. Our structural analyses of wild-type apo structures solved at different pH values (5.0-9.0) and pH-trapped (5.0 and 7.0) catalytically relevant wild-type mannuronate complexes (1) indicate that pH modulates the catalytic microenvironment for guiding structurally and chemically diverse polysaccharide substrates, (2) further establish that molecular-level fluctuation in the enzyme catalytic tunnel is preconfigured, and (3) suggest that pH modulates fluctuations resulting in optimal substrate binding and cleavage. Furthermore, our results provide key insight into how strategies to reengineer both flexible loop and regions distal to the active site could be developed to target new and diverse substrates in a wide range of applications.


Assuntos
Proteínas de Bactérias/química , Polissacarídeo-Liases/química , Stenotrophomonas maltophilia/enzimologia , Concentração de Íons de Hidrogênio , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato
3.
J Chem Inf Model ; 61(3): 1322-1333, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33570386

RESUMO

Cryptic pockets are visible in ligand-bound protein structures but are occluded in unbound structures. Utilizing these pockets in fragment-based drug-design provides an attractive option for proteins not tractable by classical binding sites. However, owing to their hidden nature, they are difficult to identify. Here, we show that small glycols find cryptic pockets on a diverse set of proteins. Initial crystallography experiments serendipitously revealed the ability of ethylene glycol, a small glycol, to identify a cryptic pocket on the W6A mutant of the RBSX protein (RBSX-W6A). Explicit-solvent molecular dynamics (MD) simulations of RBSX-W6A with the exposed state of the cryptic pocket (ethylene glycol removed) revealed closure of the pocket reiterating that the exposed state of cryptic pockets in general are unstable in the absence of ligands. Also, no change in the pocket was observed for simulations of RBSX-W6A with the occluded state of the cryptic pocket, suggesting that water molecules are not able to open the cryptic pocket. "Cryptic-pocket finding" potential of small glycols was then supported and generalized through additional crystallography experiments, explicit-cosolvent MD simulations, and protein data set construction and analysis. The cryptic pocket on RBSX-W6A was found again upon repeating the crystallography experiments with another small glycol, propylene glycol. Use of ethylene glycol as a probe molecule in cosolvent MD simulations led to the enhanced sampling of the exposed state of experimentally observed cryptic sites on a test set of two proteins (Niemann-Pick C2, Interleukin-2). Further, analyses of protein structures with validated cryptic sites showed that ethylene glycol molecules bind to sites on proteins (Bcl-xL, G-actin, myosin II, and glutamate receptor 2), which become apparent upon binding of biologically relevant ligands. Our study thus suggests potential application of the small glycols in experimental and computational fragment-based approaches to identify cryptic pockets in apparently undruggable and/or difficult targets, making these proteins amenable to drug-design strategies.


Assuntos
Glicóis , Proteínas , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/metabolismo
4.
FEBS J ; 282(18): 3543-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26102498

RESUMO

UNLABELLED: Although several factors have been suggested to contribute to thermostability, the stabilization strategies used by proteins are still enigmatic. Studies on a recombinant xylanase from Bacilllus sp. NG-27 (RBSX), which has the ubiquitous (ß/α)8 -triosephosphate isomerase barrel fold, showed that just a single mutation, V1L, although not located in any secondary structural element, markedly enhanced the stability from 70 °C to 75 °C without loss of catalytic activity. Conversely, the V1A mutation at the same position decreased the stability of the enzyme from 70 °C to 68 °C. To gain structural insights into how a single extreme N-terminus mutation can markedly influence the thermostability of the enzyme, we determined the crystal structure of RBSX and the two mutants. On the basis of computational analysis of their crystal structures, including residue interaction networks, we established a link between N-terminal to C-terminal contacts and RBSX thermostability. Our study reveals that augmenting N-terminal to C-terminal noncovalent interactions is associated with enhancement of the stability of the enzyme. In addition, we discuss several lines of evidence supporting a connection between N-terminal to C-terminal noncovalent interactions and protein stability in different proteins. We propose that the strategy of mutations at the termini could be exploited with a view to modulate stability without compromising enzymatic activity, or in general, protein function in diverse folds where N and C termini are in close proximity. DATABASE: The coordinates of RBSX, V1A and V1L have been deposited in the PDB database under the accession numbers 4QCE, 4QCF, and 4QDM, respectively.


Assuntos
Proteínas de Bactérias/química , Endo-1,4-beta-Xilanases/química , Triose-Fosfato Isomerase/química , Substituição de Aminoácidos , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
5.
Comput Struct Biotechnol J ; 2: e201209014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24688655

RESUMO

Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in the presence of proteases. Family 10 or glycosyl hydrolase 10 (GH10) xylanases are one of the well characterized and thoroughly studied classes of industrial enzymes. The TIM-barrel fold structure which is ubiquitous in nature is one of the characteristics of family 10 xylanases. Family 10 xylanases have been used as a "model system" due to their TIM-barrel fold to dissect and understand protein stability under various conditions. A better understanding of structure-stability-function relationships of family 10 xylanases allows one to apply these governing molecular rules to engineer other TIM-barrel fold proteins to improve their stability and retain function(s) under adverse conditions. In this review, we discuss the implications of N-and C-terminal interactions, observed in family 10 xylanases on protein stability under extreme conditions. The role of metal binding and aromatic clusters in protein stability is also discussed. Studying and understanding family 10 xylanase structure and function, can contribute to our protein engineering knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA