Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(10): e202318557, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38189576

RESUMO

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.

2.
J Am Chem Soc ; 145(29): 15896-15905, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440690

RESUMO

Finding stable analogues of three-dimensional (3D) lead halide perovskites has motivated the exploration of an ever-expanding repertoire of two-dimensional (2D) counterparts. However, the bandgap and exciton binding energy in these 2D systems are generally considerably higher than those in 3D analogues due to size and dielectric confinement. Such quantum confinements are most prominently manifested in the extreme 2D realization in (A)mPbI4 (m = 1 or 2) series of compounds with a single inorganic layer repeat unit. Here, we explore a new A-site cation, 4,4'-azopyridine (APD), whose size and hydrogen bonding properties endow the corresponding (APD)PbI4 2D compound with the lowest bandgap and exciton binding energy of all such compounds, 2.19 eV and 48 meV, respectively. (APD)PbI4 presents the first example of the ideal Pb-I-Pb bond angle of 180°, maximizing the valence and conduction bandwidths and minimizing the electron and hole effective masses. These effects coupled with a significant increase in the dielectric constant provide an explanation for the unique bandgap and exciton binding energies in this system. Our theoretical results further reveal that the requirement of optimizing the hydrogen bonding interactions between the organic and the inorganic units provides the driving force for achieving the structural uniqueness and the associated optoelectronic properties in this system. Our preliminary investigations in characterizing photovoltaic solar cells in the presence of APD show encouraging improvements in performances and stability.

3.
ACS Appl Mater Interfaces ; 15(22): 26606-26618, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226804

RESUMO

The ubiquitous manufacturing of lithium-ion batteries (LIBs) due to high consumer demand produces inevitable e-waste that imposes severe environmental and resource sustainability challenges. In this work, the charge storage capability and Li-ion kinetics of the recovered water-leached graphite (WG) anode from spent LIBs are enhanced by using an optimized amount of recycled graphene nanoflakes (GNFs) as an additive. The WG@GNF anode exhibits an initial discharge capacity of 400 mAh g-1 at 0.5C with 88.5% capacity retention over 300 cycles. Besides, it delivers an average discharge capacity of 320 mAh g-1 at 500 mA g-1 over 1000 cycles, which is 1.5-2 times higher than that of WG. The sharp increase in electrochemical performance is due to the synergistic effects of Li-ion intercalation into the graphite layers and Li-ion adsorption into the surface functionalities of GNF. Density functional theory calculations reveal the role of functionalization behind the superior voltage profile of WG@GNF. Besides, the unique morphology of spherical graphite particles trapping into graphene nanoflakes provides mechanical stability over long-term cycling. This work explains an efficient strategy to upgrade the electrochemical compatibility of recovered graphite anode from spent LIBs toward next-generation high-energy-density LIBs.

4.
Nat Commun ; 12(1): 6394, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737288

RESUMO

Organic halide salt passivation is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favored two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. To overcome this limitation, we studied the energy barrier of 2D perovskite formation from ortho-, meta- and para-isomers of (phenylene)di(ethylammonium) iodide (PDEAI2) that were designed for tailored defect passivation. Treatment with the most sterically hindered ortho-isomer not only prevents the formation of surficial 2D perovskite film, even at elevated temperatures, but also maximizes the passivation effect on both shallow- and deep-level defects. The ensuing PSCs achieve an efficiency of 23.9% with long-term operational stability (over 1000 h). Importantly, a record efficiency of 21.4% for the perovskite module with an active area of 26 cm2 was achieved.

5.
Nat Commun ; 12(1): 3472, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108463

RESUMO

Many of the best-performing perovskite photovoltaic devices make use of 2D/3D interfaces, which improve efficiency and stability - but it remains unclear how the conversion of 3D-to-2D perovskite occurs and how these interfaces are assembled. Here, we use in situ Grazing-Incidence Wide-Angle X-Ray Scattering to resolve 2D/3D interface formation during spin-coating. We observe progressive dimensional reduction from 3D to n = 3 → 2 → 1 when we expose (MAPbBr3)0.05(FAPbI3)0.95 perovskites to vinylbenzylammonium ligand cations. Density functional theory simulations suggest ligands incorporate sequentially into the 3D lattice, driven by phenyl ring stacking, progressively bisecting the 3D perovskite into lower-dimensional fragments to form stable interfaces. Slowing the 2D/3D transformation with higher concentrations of antisolvent yields thinner 2D layers formed conformally onto 3D grains, improving carrier extraction and device efficiency (20% 3D-only, 22% 2D/3D). Controlling this progressive dimensional reduction has potential to further improve the performance of 2D/3D perovskite photovoltaics.

6.
Nanoscale ; 12(34): 17769-17779, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32820761

RESUMO

A cost-effective electrocatalyst should have a high dispersion of active atoms and a controllable surface structure to optimize activity. Additionally, bifunctional characteristics give an added benefit for the overall water splitting. Herein, we report the synthesis and fabrication of Fe-doped Cu/Cu3P supported on a flexible carbon cloth (CC) with a hydrophilic surface for efficient bifunctional water electrolysis under alkaline conditions. Surface doping of Fe in the hexagonal Cu3P does not alter the lattice parameters, but it promotes the surface metallicity by stimulating Cuδ+ and Cu0 sites in Cu3P, resulting in an augmented electroactive surface area. Cu2.75Fe0.25P composition exhibits unprecedented OER activity with a low overpotential of 470 mV at 100 mA cm-2. Under a two electrode electrolyzer system the oxygen and hydrogen gas was evolved with an unprecedented rate at their respective electrode made of same catalyst. Density functional theory further elucidates the role of the Fe center toward electronic state modulation, which eventually alters the entire adsorption behavior of the reaction intermediates and reduces the overpotential on Fe-doped system over pristine Cu3P.

7.
J Phys Chem Lett ; 10(23): 7398-7405, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721591

RESUMO

Here we report on the first structural and optical high-pressure investigation of MASnBr3 (MA = [CH3NH3]+) and CsSnBr3 halide perovskites. A massive red shift of 0.4 eV for MASnBr3 and 0.2 eV for CsSnBr3 is observed within 1.3 to 1.5 GPa from absorption spectroscopy, followed by a huge blue shift of 0.3 and 0.5 eV, respectively. Synchrotron powder diffraction allowed us to correlate the upturn in the optical properties trend (onset of blue shift) with structural phase transitions from cubic to orthorhombic in MASnBr3 and from tetragonal to monoclinic for CsSnBr3. Density functional theory calculations indicate a different underlying mechanism affecting the band gap evolution with pressure, a key role of metal-halide bond lengths for CsSnBr3 and cation orientation for MASnBr3, thus showing the impact of a different A-cation on the pressure response. Finally, the investigated phases, differently from the analogous Pb-based counterparts, are robust against amorphization showing defined diffraction up to the maximum pressure used in the experiments.

8.
J Am Chem Soc ; 141(34): 13459-13467, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31366193

RESUMO

Two-dimensional (2D) and quasi-2D perovskite materials have enabled advances in device performance and stability relevant to a number of optoelectronic applications. However, the alignment among the bands of these variably quantum confined materials remains a controversial topic: there exist multiple experimental reports supporting type-I, and also others supporting type-II, band alignment among the reduced-dimensional grains. Here we report a combined computational and experimental study showing that variable ligand concentration on grain surfaces modulates the surface charge density among neighboring quantum wells. Density functional theory calculations and ultraviolet photoelectron spectroscopy reveal that the effective work function of a given quantum well can be varied by modulating the density of ligands at the interface. These induce type-II interfaces in otherwise type-I aligned materials. By treating 2D perovskite films, we find that the effective work function can indeed be shifted down by up to 1 eV. We corroborate the model via a suite of pump-probe transient absorption experiments: these manifest charge transfer consistent with a modulation in band alignment of at least 200 meV among neighboring grains. The findings shed light on perovskite 2D band alignment and explain contrasting behavior of quasi-2D materials in light-emitting diodes (LEDs) and photovoltaics (PV) in the literature, where materials can exhibit either type-I or type-II interfaces depending on the ligand concentration at neighboring surfaces.

9.
J Phys Chem Lett ; 10(8): 1790-1798, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30922057

RESUMO

The origin of the long carrier lifetime in lead halide perovskites is still under debate, and, among different hypotheses, the formation of large polarons preventing the recombination of charge couples is one of the most fascinating. Using state-of-the art ab initio calculations, we report a systematic study of the polaron formation process in metal halide perovskites, focusing on the influence of the chemical composition of the perovskite on the polaron properties. We examine variations in A-site cations (FA, MA, Cs, and Cs-MA), B-site cations (Pb, Sn, and Pb-Sn), and X-site anions (Br, I). Our study confirms that stronger structural distortions occur for Cs than for MA and FA, with the effect of different A-site cations being almost additive. For the same A cation, bromide features stronger distortions than iodide perovskites. The pure Sn phase has an almost double polaron stabilization energy compared with the pure Pb phase. Surprisingly, the trend of polaron stabilization energy is nonmonotonic in mixed Sn-Pb perovskites, with a maximum for small Sn percentages. Polaron formation is found to be promoted by bond asymmetry, ranging from small to large polarons in mixed Sn-Pb perovskites depending on the relative Sn percentage.

10.
Chemphyschem ; 20(3): 383-391, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485628

RESUMO

Using state-of-the-art density functional theoretical calculations, we have modelled a facetted CdS nanotube (NT) catalyst for photocatalytic water splitting. The overall photocatalytic activity of the CdS photocatalyst has been predicted based on the electronic structures, band edge alignment, and overpotential calculations. For comparisons, we have also investigated the water splitting process over bulk CdS. The band edge alignment along with the oxygen evolution reaction/hydrogen evolution reaction (OER/HER) mechanism studies help us find out the effective overpotential for the overall water splitting on these surfaces. Our study shows that the CdS NT has a highly stabilized valence band edge compared to that of bulk CdS owing to strong p-d mixing. The highly stabilized valence band edge is important for the hole-transfer process and reduces the risk of electron-hole recombination. CdS nanotube requires less overpotential for water oxidation reaction than the bulk CdS. Our findings suggest that the efficiency of the water oxidation/reduction process further improves in CdS as we reduce its dimensionality, that is going from bulk CdS to one-dimensional nanotube. Furthermore, the stabilized valence band edge of CdS nanotube also improves the photostability of CdS, which is a problem for bulk CdS.

11.
Nanoscale ; 9(27): 9537-9547, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28661523

RESUMO

The design of an efficient and selective catalyst for hydrogen peroxide (H2O2) formation is highly sought due to its industrial importance. As alternatives to a conventional Pd-Au alloy-based catalyst, three cuboctahedral core-shell nanoclusters (Au19@Pt60, Co19@Pt60 and Au10Co9@Pt60 NCs) have been investigated. Their catalytic activities toward H2O2 formation have been compared with that of pure Pt cuboctahedral NC (Pt79). Much attention has been devoted to thermodynamic and kinetic parameters to find out the feasibility of the two-electron (2e-) over the four-electron (4e-) oxygen reduction reaction (ORR) to improve the product selectivity (H2O vs. H2O2). Elementary steps corresponding to H2O2 formation are significantly improved over the Au10Co9@Pt60 NC catalyst compared with the pure core-shell NCs and periodic surface based catalysts. Furthermore, the Au10Co9@Pt60 NC favours H2O2 formation via the much desired Langmuir-Hinshelwood mechanism. The potential-dependent study shows that the H2O2 formation is thermodynamically favourable up to 0.43 V on the Au10Co9@Pt60 NC and thus the overpotential for the 2e- ORR process is significantly lowered. Besides, the Au10Co9@Pt60 NC is highly selective for H2O2 formation over H2O formation.

12.
Chem Asian J ; 12(15): 1944-1951, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28493516

RESUMO

Exploring suitable electrode materials is a fundamental step toward developing Al batteries with enhanced performance. In this work, we explore using density functional theory calculations the feasibility of single-walled carbon nanotubes (SWNTs) as a cathode material for Al batteries. Carbon nanotubes with hollow structures and large surface area are able to overcome the difficulty of activating the opening of interlayer spaces as observed in graphite electrode during the first intercalation cycle. Our results show that AlCl4 binds strongly with the SWNT to result in an energetically and thermally stable AlCl4 -adsorbed SWNT system. Diffusion calculations show that the SWNT system allows ultrafast diffusion of AlCl4 with a more favorable inner surface diffusion than outer surface diffusion. Our charge-density difference and Bader atomic charge analysis confirm the oxidation of SWNT upon adsorption of AlCl4 , which shows a similar behavior to the previously studied graphite cathode. The average open-circuit voltage and AlCl4 storage capacity increases with increasing SWNT diameter and can be as high as 1.96 V and 275 mA h g-1 in (25,25) SWNT relative to graphite (70 mA h g-1 ). All of these properties show that SWNTs are a potential cathode material for high-performance Al batteries and should be explored further.

13.
Phys Chem Chem Phys ; 19(11): 7980-7989, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28263339

RESUMO

Identifying a suitable electrode material with desirable electrochemical properties remains a primary challenge for rechargeable Al-ion batteries. Recently an ultrafast rechargeable Al-ion battery was reported with high charge/discharge rate, (relatively) high discharge voltage and high capacity that uses a graphite-based cathode. Using calculations from first-principles, we have investigated the staging mechanism of AlCl4 intercalation into bulk graphite and evaluated the stability, specific capacity and voltage profile of AlCl4 intercalated compounds. Ab initio molecular dynamics is performed to investigate the thermal stability of AlCl4 intercalated graphite structures. Our voltage profiles show that the first AlCl4 intercalation step could be a more sluggish step than the successive intercalation steps. However, the diffusion of AlCl4 is very fast in the expanded graphite host layers with a diffusion barrier of ∼0.01 eV, which justifies the ultrafast charging rate of a graphite based Al-ion battery. And such an AlCl4 intercalated battery provides an average voltage of 2.01-2.3 V with a maximum specific capacity of 69.62 mA h g-1, which is excellent for anion intercalated batteries. Our density of states and Bader charge analysis shows that the AlCl4 intercalation into the bulk graphite is a charging process. Hence, we believe that our present study will be helpful in understanding the staging mechanism of AlCl4 intercalation into graphite-like layered electrodes for Al-ion batteries, thus encouraging further experimental work.

14.
Phys Chem Chem Phys ; 19(5): 3660-3669, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094366

RESUMO

Stanene is a quantum spin Hall insulator and a promising material for electronic and optoelectronic devices. Density functional theory (DFT) calculations are performed to study the band gap opening in stanene by elemental mono-doping (B, N) and co-doping (B-N). Different patterned B-N co-doping is studied to change the electronic properties of stanene. A patterned B-N co-doping opens the band gap in stanene and its semiconducting nature persists under strain. Molecular dynamics (MD) simulations are performed to confirm the thermal stability of such a doped system. The stress-strain study indicates that such a doped system is as stable as pure stanene. Our work function calculations show that stanene and doped stanene have a lower work function than graphene and thus are promising materials for photocatalysts and electronic devices.

15.
Nanoscale ; 8(29): 14117-26, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27321785

RESUMO

High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ∼450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 µeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.

16.
Sci Rep ; 6: 25590, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27157072

RESUMO

Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3.

17.
Nanoscale ; 7(32): 13438-51, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26155948

RESUMO

The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.

18.
Phys Chem Chem Phys ; 16(47): 26365-74, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25367892

RESUMO

Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.


Assuntos
Compostos de Anilina/síntese química , Níquel/química , Nitrobenzenos/química , Teoria Quântica , Compostos de Anilina/química , Catálise , Estrutura Molecular , Oxirredução , Propriedades de Superfície
19.
Dalton Trans ; 43(21): 8083-93, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24722585

RESUMO

A tridentate ligand p-chloro-2-{(2-(dimethylamino)ethylimino)methyl}phenol (HL) was used to generate an octahedral nickel complex [Ni(L)Cl(H2O)2] 1 which was further converted into a square-planar nickel complex [Ni(L)(N3)] 2. The [2 + 3] cycloaddition reaction between metal coordinated azide 2 and different organonitriles under microwave irradiation afforded tri- and pentanuclear nickel(II) complexes 4a-4c. Reaction with benzonitrile and 3-cyano pyridine furnished the trinuclear species [Ni3L2(5-phenyltetrazolato)4(DMF)2] 4a and [Ni3L2{5-(3-pyridyl)-tetrazolato}4(DMF)2]·2H2O 4b, respectively. The nickel centers were found to be linearly disposed to each other and the complex is formed by a 2,3-tetrazolate bridge and a phenoxo bridge between central and terminal nickel atoms. Compound 2 when treated with 1,2-dicyanobenzene under identical conditions furnished a pentanuclear complex [Ni5L4{5-(2-cyanophenyl)-tetrazolato}4(OH)2(H2O)2]·3H2O·DMF 4c. In this pentanuclear compound two dimeric nickel units are connected to the central nickel center by a µ3-hydroxo bridge and a tetrazolate ligand operating via a relatively rare 1,2,3-bridging mode. The compounds were characterized by IR, elemental analysis, thermogravimetric analysis and single crystal X-ray crystallography. The magnetic susceptibility data for compounds 4a-4c show dominant antiferromagnetic interactions between the nickel centers for all the complexes. DFT calculations were performed to investigate the magnetic parameter in one of the complexes 4b by a broken symmetry approach.

20.
Inorg Chem ; 53(6): 2904-9, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24564248

RESUMO

Purely aqueous-phase chemoselective reduction of a wide range of aromatic and aliphatic nitro substrates has been performed in the presence of inexpensive Ni- and Co-based nanoparticle catalysts using hydrazine hydrate as a reducing agent at room temperature. Along with the observed high conversions and selectivities, the studied nanoparticle catalysts also exhibit a high tolerance to other highly reducible groups present in the nitro substrates. The development of these potential chemoselective reduction catalysts also provides a facile route for the synthesis of other industrially important fine chemicals or biologically important compounds, where other highly reducible groups are present in close proximity to the targeted nitro groups.


Assuntos
Metais/química , Nanoestruturas , Nitrocompostos/química , Catálise , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA