Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Plant Biotechnol J ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264967

RESUMO

Plants offer a promising chassis for the large-scale, cost-effective production of diverse therapeutics, including antimicrobial peptides (AMPs). However, key advances will reduce production costs, including simplifying the downstream processing and purification steps. Here, using Nicotiana benthamiana plants, we present an improved modular design that enables AMPs to be secreted via the endomembrane system and sequestered in an extracellular compartment, the apoplast. Additionally, we translationally fused an AMP to a mutated small ubiquitin-like modifier sequence, thereby enhancing peptide yield and solubilizing the peptide with minimal aggregation and reduced occurrence of necrotic lesions in the plant. This strategy resulted in substantial peptide accumulation, reaching around 2.9 mg AMP per 20 g fresh weight of leaf tissue. Furthermore, the purified AMP demonstrated low collateral toxicity in primary human skin cells, killed pathogenic bacteria by permeabilizing the membrane and exhibited anti-infective efficacy in a preclinical mouse (Mus musculus) model system, reducing bacterial loads by up to three orders of magnitude. A base-case techno-economic analysis demonstrated the economic advantages and scalability of our plant-based platform. We envision that our work can establish plants as efficient bioreactors for producing preclinical-grade AMPs at a commercial scale, with the potential for clinical applications.

2.
Front Plant Sci ; 15: 1449579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286837

RESUMO

Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.

3.
Nucleic Acids Res ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149894

RESUMO

The 3D chromatin organization plays a major role in the control of gene expression. However, our comprehension of the governing principles behind nuclear organization remains incomplete. Particularly, the spatial segregation of loci with similar repressive transcriptional states in plants poses a significant yet poorly understood puzzle. In this study, employing a combination of genetics and advanced 3D genomics approaches, we demonstrated that a redistribution of facultative heterochromatin marks in regions usually occupied by constitutive heterochromatin marks disrupts the 3D genome compartmentalisation. This disturbance, in turn, triggers novel chromatin interactions between genic and transposable element (TE) regions. Interestingly, our results imply that epigenetic features, constrained by genetic factors, intricately mold the landscape of 3D genome organisation. This study sheds light on the profound genetic-epigenetic interplay that underlies the regulation of gene expression within the intricate framework of the 3D genome. Our findings highlight the complexity of the relationships between genetic determinants and epigenetic features in shaping the dynamic configuration of the 3D genome.

4.
Toxicol Lett ; 401: 13-23, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39197506

RESUMO

BACKGROUND: Nowadays, the use of food additives, such as Sunset Yellow (SY), is growing, which attracted attention to the potential relationship between some diseases and food additives. AIM: The study aimed to investigate the role of Sunset Yellow during chemically-induced mammary gland carcinogenesis in Sprague-Dawley rats. MATERIAL AND METHODS: Three groups of female rats were intraperitoneally administered with N-methyl-N-nitrosourea (MNU). Group 1 was set on a basal diet. Group 2 was treated with 161.4 mg\kg\day Sunset Yellow (SY). Group 3 was given SY at 80.7 mg\kg\day. Groups 4-6 were not administered MNU; Group 4 received vehicles only. Groups 5 and 6 were administered SY similarly to groups 2 and 3 respectively. RESULTS: Sunset Yellow at both doses exerted a significant dose-dependent increase in tumor incidences, multiplicities, volumes, and decreased tumor latency as compared with control. Immunolabeling indexes of the proliferating cell nuclear antigen, estrogen receptor alpha, and progesterone receptor were significantly increased after SY treatment. Oxidative stress markers, serum estrogen, progesterone, and prolactin levels were significantly modified by SY treatment. The mRNA expression of estrogen receptor alpha and epidermal growth factor was up-regulated in SY groups versus control. CONCLUSION: Collectively, SY has significantly promoted MNU-induced mammary tumors in rats with underlying mechanisms correlating SY consumption with estrogen disruption and subsequent antioxidative stress discrepancy.

5.
J Biol Chem ; 300(9): 107720, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214308

RESUMO

Site-specific nucleases are crucial for genome engineering applications in medicine and agriculture. The ideal site-specific nucleases are easily reprogrammable, highly specific in target site recognition, and robust in nuclease activities. Prokaryotic Argonaute (pAgo) proteins have received much attention as biotechnological tools due to their ability to recognize specific target sequences without a protospacer adjacent motif, but their lack of intrinsic dsDNA unwinding activity limits their utility in key applications such as gene editing. Recently, we developed a pAgo-based system for site-specific DNA cleavage at physiological temperatures independently of the DNA form, using peptide nucleic acids (PNAs) to facilitate unwinding dsDNA targets. Here, we fused catalytically dead pAgos with the nuclease domain of the restriction endonuclease FokI and named this modified platform PNA-assisted FokI-(d)pAgo (PNFP) editors. In the PNFP system, catalytically inactive pAgo recognizes and binds to a specific target DNA sequence based on a programmable guide DNA sequence; upon binding to the target site, the FokI domains dimerize and introduce precise dsDNA breaks. We explored key parameters of the PNFP system including the requirements of PNA and guide DNAs, the specificity of PNA and guide DNA on target cleavage, the optimal concentration of different components, reaction time for invasion and cleavage, and ideal temperature and reaction buffer, to ensure efficient DNA editing in vitro. The results demonstrated robust site-specific target cleavage by PNFP system at optimal conditions in vitro. We envision that the PNFP system will provide higher editing efficiency and specificity with fewer off-target effects in vivo.

6.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968127

RESUMO

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Assuntos
Epigenoma , Histonas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Histonas/metabolismo , Histonas/genética , Epigênese Genética , Genoma de Planta , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Heterocromatina/genética , Código das Histonas/genética
7.
Methods Mol Biol ; 2832: 81-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869789

RESUMO

Alternative splicing (AS) of pre-mRNAs is a type of post-transcriptional regulation in eukaryotes that expands the number of mRNA isoforms. Intron retention is the primary form of AS in plants and occurs more frequently when plants are exposed to environmental stresses. Several wet-lab and bioinformatics techniques are used to detect AS events, but these techniques are technically challenging or unsuitable for studying AS in plants. Here, we report a method that combines RNA-sequencing and reverse transcription PCR for visualizing and validating heat stress-induced AS events in plants, using Arabidopsis thaliana and HEAT SHOCK PROTEIN21 (HSP21) as examples.


Assuntos
Processamento Alternativo , Arabidopsis , Resposta ao Choque Térmico , Processamento Alternativo/genética , Resposta ao Choque Térmico/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biologia Computacional/métodos
8.
Front Plant Sci ; 15: 1385169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895613

RESUMO

Plant viruses cause substantial losses in crop yield and quality; therefore, devising new, robust strategies to counter viral infections has important implications for agriculture. Virus inhibitory protein endoplasmic reticulum-associated interferon-inducible (Viperin) proteins are conserved antiviral proteins. Here, we identified a set of Viperin and Viperin-like proteins from multiple species and tested whether they could interfere with RNA viruses in planta. Our data from transient and stable overexpression of these proteins in Nicotiana benthamiana reveal varying levels of interference against the RNA viruses tobacco mosaic virus (TMV), turnip mosaic virus (TuMV), and potato virus x (PVX). Harnessing the potential of these proteins represents a novel avenue in plant antiviral approaches, offering a broader and more effective spectrum for application in plant biotechnology and agriculture. Identifying these proteins opens new avenues for engineering a broad range of resistance to protect crop plants against viral pathogens.

9.
Plant Biotechnol J ; 22(8): 2282-2300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685599

RESUMO

Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.


Assuntos
Peptídeos Antimicrobianos , Agricultura Molecular , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Agricultura Molecular/métodos
10.
Acta Parasitol ; 69(1): 951-999, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38492183

RESUMO

PURPOSE: The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS: Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1ß and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-ß4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS: The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1ß, IL-6 and anti-inflammatory cytokines as TGF-ß4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION: The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.


Assuntos
Galinhas , Quitosana , Coccidiose , Citocinas , Eimeria tenella , Nanopartículas , Extratos Vegetais , Doenças das Aves Domésticas , Rosmarinus , Animais , Coccidiose/veterinária , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Coccidiose/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Eimeria tenella/efeitos dos fármacos , Citocinas/metabolismo , Rosmarinus/química , Oocistos/efeitos dos fármacos , Fezes/parasitologia , Ração Animal/análise
11.
Plant Cell Rep ; 43(4): 98, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494539

RESUMO

Genome-editing technologies have revolutionized research in plant biology, with major implications for agriculture and worldwide food security, particularly in the face of challenges such as climate change and increasing human populations. Among these technologies, clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated protein [Cas] systems are now widely used for editing crop plant genomes. In this review, we provide an overview of CRISPR-Cas technology and its most significant applications for improving crop sustainability. We also review current and potential technological advances that will aid in the future breeding of crops to enhance food security worldwide. Finally, we discuss the obstacles and challenges that must be overcome to realize the maximum potential of genome-editing technologies for future crop and food production.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Genoma de Planta/genética , Bioengenharia , Agricultura
12.
ACS Synth Biol ; 13(3): 837-850, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38349963

RESUMO

The World Health Organization's global initiative toward eliminating high-risk Human Papillomavirus (hrHPV)-related cancers recommends DNA testing over visual inspection in all settings for primary cancer screening and HPV eradication by 2100. However, multiple hrHPV types cause different types of cancers, and there is a pressing need for an easy-to-use, multiplex point-of-care diagnostic platform for detecting different hrHPV types. Recently, CRISPR-Cas systems have been repurposed for point-of-care detection. Here, we established a CRISPR-Cas multiplexed diagnostic assay (CRISPRD) to detect cervical cancer-causing hrHPVs in one reaction (one-pot assay). We harnessed the compatibility of thermostable AapCas12b, TccCas13a, and HheCas13a nucleases with isothermal amplification and successfully detected HPV16 and HPV18, along with an internal control in a single-pot assay with a limit of detection of 10 copies and 100% specificity. This platform offers a rapid and practical solution for the multiplex detection of hrHPVs, which may facilitate large-scale hrHPV point-of-care screening. Furthermore, the CRISPRD platform programmability enables it to be adapted for the multiplex detection of any two nucleic acid biomarkers as well as internal control.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/prevenção & controle , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/prevenção & controle , Testes Imediatos , Papillomavirus Humano 16/genética
13.
Nucleic Acids Res ; 52(6): 3469-3482, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421613

RESUMO

Gene-editing technologies have revolutionized biotechnology, but current gene editors suffer from several limitations. Here, we harnessed the power of gamma-modified peptide nucleic acids (γPNAs) to facilitate targeted, specific DNA invasion and used T7 endonuclease I (T7EI) to recognize and cleave the γPNA-invaded DNA. Our data show that T7EI can specifically target PNA-invaded linear and circular DNA to introduce double-strand breaks (DSBs). Our PNA-Guided T7EI (PG-T7EI) technology demonstrates that T7EI can be used as a programmable nuclease capable of generating single or multiple specific DSBs in vitro under a broad range of conditions and could be potentially applied for large-scale genomic manipulation. With no protospacer adjacent motif (PAM) constraints and featuring a compact protein size, our PG-T7EI system will facilitate and expand DNA manipulations both in vitro and in vivo, including cloning, large-fragment DNA assembly, and gene editing, with exciting applications in biotechnology, medicine, agriculture, and synthetic biology.


Assuntos
Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I , Ácidos Nucleicos Peptídicos , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , DNA Circular , Edição de Genes
14.
Anal Chem ; 96(6): 2599-2609, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38300270

RESUMO

Programmable site-specific nucleases (SSNs) hold extraordinary promise to unlock myriad gene editing applications in medicine and agriculture. However, developing small and specific SSNs is needed to overcome the delivery and specificity translational challenges of current genome engineering technologies. Structure-guided nucleases have been harnessed to generate double-strand DNA breaks but with limited success and translational potential. Here, we harnessed the power of peptide nucleic acids (PNAs) for site-specific DNA invasion and the generation of localized DNA structures that are recognized and cleaved by the eukaryotic resolvase AtMOC1 from Arabidopsis thaliana. We named this technology PNA-assisted Resolvase-mediated (PNR) editing. We tested the PNR editing concept in vitro and demonstrated its precise target specificity, examined the nucleotide requirement around the PNA invasion for the AtMOC1-mediated cleavage, mapped the AtMOC1-mediated cleavage sites, tested the role of different types and lengths of PNA molecules invasion into dsDNA for the AtMOC1-mediated cleavage, optimized the in vitro PNA invasion and AtMOC1 cleavage conditions such as temperature, buffer conditions, and cleavage time points, and demonstrated the multiplex cleavage for precise fragment release. We discuss the best design parameters for efficient, site-specific in vitro cleavage using PNR editors.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Quebras de DNA de Cadeia Dupla , DNA/química , Edição de Genes , Temperatura
15.
Plant Sci ; 341: 112018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325660

RESUMO

Sustainable agriculture requires locally adapted varieties that produce nutritious food with limited agricultural inputs. Genome engineering represents a viable approach to develop cultivars that fulfill these criteria. For example, the red Hassawi rice, a native landrace of Saudi Arabia, tolerates local drought and high-salinity conditions and produces grain with diverse health-promoting phytochemicals. However, Hassawi has a long growth cycle, high cultivation costs, low productivity, and susceptibility to lodging. Here, to improve these undesirable traits via genome editing, we established efficient regeneration and Agrobacterium-mediated transformation protocols for Hassawi. In addition, we generated the first high-quality reference genome and targeted the key flowering repressor gene, Hd4, thus shortening the plant's lifecycle and height. Using CRISPR/Cas9 multiplexing, we simultaneously disrupted negative regulators of flowering time (Hd2, Hd4, and Hd5), grain size (GS3), grain number (GN1a), and plant height (Sd1). The resulting homozygous mutant lines flowered extremely early (∼56 days) and had shorter stems (approximately 107 cm), longer grains (by 5.1%), and more grains per plant (by 50.2%), thereby enhancing overall productivity. Furthermore, the awns of grains were 86.4% shorter compared to unedited plants. Moreover, the modified rice grain displayed improved nutritional attributes. As a result, the modified Hassawi rice combines several desirable traits that can incentivize large-scale cultivation and reduce malnutrition.


Assuntos
Oryza , Oryza/genética , Edição de Genes , Fenótipo , Agricultura , Sistemas CRISPR-Cas
17.
J Exp Bot ; 75(3): 802-818, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37924151

RESUMO

Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Splicing de RNA , Processamento Alternativo , Plantas/metabolismo , Estresse Fisiológico/genética
18.
Anal Chem ; 95(38): 14209-14218, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37696750

RESUMO

Monitoring diseases caused by pathogens or by mutations in DNA sequences requires accurate, rapid, and sensitive tools to detect specific nucleic acid sequences. Here, we describe a new peptide nucleic acid (PNA)-based nucleic acid detection toolkit, termed PNA-powered diagnostics (PNA-Pdx). PNA-Pdx employs PNA probes that bind specifically to a target and are then detected in lateral flow assays. This can precisely detect a specific pathogen or genotype genomic sequence. PNA probes can also be designed to invade double-stranded DNAs (dsDNAs) to produce single-stranded DNAs for precise CRISPR-Cas12b-based detection of genomic SNPs without requiring the protospacer-adjacent motif (PAM), as Cas12b requires PAM sequences only for dsDNA targets. PNA-Pdx identified target nucleic acid sequences at concentrations as low as 2 copies/µL and precisely detected the SARS-CoV-2 genome in clinical samples in 40 min. Furthermore, the specific dsDNA invasion by the PNA coupled with CRISPR-Cas12b precisely detected genomic SNPs without PAM restriction. Overall, PNA-Pdx provides a novel toolkit for nucleic acid and SNP detection as well as highlights the benefits of engineering PNA probes for detecting nucleic acids.


Assuntos
COVID-19 , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , Ácidos Nucleicos Peptídicos/genética , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Peptídeos
19.
Nucleic Acids Res ; 51(17): 9491-9506, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560931

RESUMO

Programmable site-specific nucleases promise to unlock myriad applications in basic biology research, biotechnology and gene therapy. Gene-editing systems have revolutionized our ability to engineer genomes across diverse eukaryotic species. However, key challenges, including delivery, specificity and targeting organellar genomes, pose barriers to translational applications. Here, we use peptide nucleic acids (PNAs) to facilitate precise DNA strand invasion and unwinding, enabling prokaryotic Argonaute (pAgo) proteins to specifically bind displaced single-stranded DNA and introduce site-specific double-strand breaks (DSBs) independent of the target sequence. We named this technology PNA-assisted pAgo editing (PNP editing) and determined key parameters for designing PNP editors to efficiently generate programable site-specific DSBs. Our design allows the simultaneous use of multiple PNP editors to generate multiple site-specific DSBs, thereby informing design considerations for potential in vitro and in vivo applications, including genome editing.


Assuntos
Quebras de DNA de Cadeia Dupla , Edição de Genes , Ácidos Nucleicos Peptídicos , Sistemas CRISPR-Cas , DNA/genética , Edição de Genes/métodos , Genoma , Ácidos Nucleicos Peptídicos/metabolismo , Proteínas Argonautas/metabolismo
20.
J Trace Elem Med Biol ; 79: 127265, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478799

RESUMO

BACKGROUND: Zinc nanoparticles are documented to be harmful to fish because their accumulation in fish bring about many irreversible changes in their health. Nigella sativa and its oil have been endorsed in aquaculture to improve fish health. METHODS: Two hundred seventy experimental fish (113 ± 5 g body weight) were divided into 6 groups G1-6; control fish fed a diet without any treatment (G1), 0.3% of NSO (G2), 0.5% of NSO (G3), ZnO NPs (40 mg/kg diet) (G4), 0.3% of NSO and ZnO NPs (40 mg/kg diet) (G5), 0.5% of NSO and ZnO NPs (40 mg/kg diet) (G6), the trial lasted for six weeks. RESULTS: Growth performance was enhanced in fish received diets containing NSO, final weight (FW), weight gain (WG), daily weight gain (DWG), and relative growth rate (RGR) were significantly increased with lower food conversion ratios (FCR) compared to the control. The hepatic glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased in response to ZnO NPs stress and only 0.5% NSO supplementation could ameliorate such increment. The immune-related genes [interleukin1-beta (IL-1ß), tumor necrosis factor-beta (TNF-ß), transforming growth factor-beta 2 (TGF-ß2) and C-type lysozyme] as well as growth-related gene [insulin-like growth factor 1 (IGF1)] in liver showed an upregulation in fish fed with NSO diets. Administration of ZnO NPs lowered the resistance of Oreochromis niloticus against bacterial infection with Aeromonas hydrophila and NSO could enhance the immunity in the highest tested concentration (0.5%) (G6). CONCLUSIONS: The obtained results implied that NSO could enhance the oxidative and immune status of O. niloticus which could compensate ZnO NPs stress as well as experimental infection of a virulent strain of A. hydrophila. Our results revealed that NSO might increase fish growth and immunity only at a high dose (0.5%).


Assuntos
Ciclídeos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Suplementos Nutricionais , Ciclídeos/metabolismo , Óxidos , Resistência à Doença , Zinco/metabolismo , Dieta , Ração Animal/análise , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA