Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(19): 4094-4101, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36285219

RESUMO

Rotational dynamics at the molecular level could provide additional data regarding protein diffusion and cytoskeleton formation at the cellular level. Due to the isotropic emission pattern of fluorescence molecules, it is challenging to extract rotational information from them during imaging. Metal nanoparticles show a polarization-dependent response and could be used for sensing rotational motion. Nanoparticles as an orientation sensing probe offer bio-compatibility and robustness against photo-blinking and photo-bleaching compared to conventional fluorescent molecules. Previously, asymmetric geometrical structures such as nanorods have been used for orientational imaging. Here, we show orientational imaging of symmetric geometrical structures such as 100 nm isolated silver nanocubes by coupling a hyperspectral detector and a focused ion beam (FIB)-fabricated correlating substrate. More than 100 nanocubes are analyzed to confirm spectral shifts in the scattering spectra due to variations in the orientation of the nanocubes with respect to the incoming light. Results are further validated using finite-difference time-domain simulations. Our observations suggest a novel strategy for high-throughput orientation imaging of nanoparticles.

2.
Nano Lett ; 19(9): 6192-6202, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31387355

RESUMO

Recently, fluorescence-based super-resolution techniques such as stimulated emission depletion (STED) and stochastic optical reconstruction microscopy (STORM) have been developed to achieve near molecular-scale resolution. However, such a super-resolution technique for nonlinear label-free microscopy based on second harmonic generation (SHG) is lacking. Since SHG is label-free and does not involve real-energy level transitions, fluorescence-based super-resolution techniques such as STED cannot be applied to improve the resolution. In addition, due to the coherent and non-isotropic emission nature of SHG, single-molecule localization techniques based on isotropic emission of fluorescent molecule such as STORM will not be appropriate. Single molecule SHG microscopy is largely hindered due to the very weak nonlinear optical scattering cross sections of SHG scattering processes. Thus, enhancing SHG using plasmonic nanostructures and nanoantennas has recently gained much attention owing to the potential of various nanoscale geometries to tightly confine electromagnetic fields into small volumes. This confinement provides substantial enhancement of electromagnetic field in nanoscale regions of interest, which can significantly boost the nonlinear signal produced by molecules located in the plasmonic hotspots. However, to date, plasmon-enhanced SHG has been primarily applied for the measurement of bulk properties of the materials/molecules, and single molecule SHG imaging along with its orientation information has not been realized yet. Herein, we achieved simultaneous visualization and three-dimensional (3D) orientation imaging of individual rhodamine 6G (R6G) molecules in the presence of plasmonic silver nanohole arrays. SHG and two-photon fluorescence microscopy experiments together with finite-difference time-domain (FDTD) simulations revealed a ∼106-fold nonlinear enhancement factor at the hot spots on the plasmonic silver nanohole substrate, enabling detection of single molecules using SHG. The position and 3D orientation of R6G molecules were determined using the template matching algorithm by comparing the experimental data with the calculated dipole emission images. These findings could enable SHG-based single molecule detection and orientation imaging of molecules which could lead to a wide range of applications from nanophotonics to super-resolution SHG imaging of biological cells and tissues.


Assuntos
Imagem Molecular/métodos , Nanoestruturas/química , Microscopia de Geração do Segundo Harmônico/métodos , Imagem Individual de Molécula/métodos , Fluorescência , Microscopia de Fluorescência/tendências , Nanotecnologia/tendências , Prata/química , Ressonância de Plasmônio de Superfície
3.
Nanoscale ; 10(33): 15564-15570, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30088500

RESUMO

In this paper, we theoretically demonstrate a dual-band independently tunable absorber consisting of a stacked graphene nanodisk and graphene layer with nanohole structure, and a metal reflector spaced by insulator layers. This structure exhibits a dipole resonance mode in graphene nanodisks and a quadrupole resonance mode in the graphene layer with nanoholes, which results in the enhancement of absorption over a wide range of incident angles for both TE and TM polarizations. The peak absorption wavelength is analyzed in detail for different geometrical parameters and the Fermi energy levels of graphene. The results show that both peaks of the absorber can be tuned dynamically and simultaneously by varying the Fermi energy level of graphene nanodisks and graphene layer with nanoholes structure. In addition, one can also independently tune each resonant frequency by only changing the Fermi energy level of one graphene layer. Such a device could be used as a chemical sensor, detector or multi-band absorber.

4.
Sci Rep ; 7(1): 14044, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070864

RESUMO

We numerically design and experimentally test a SERS-active substrate for enhancing the SERS signal of a single layer of graphene (SLG) in water. The SLG is placed on top of an array of silver-covered nanoholes in a polymer and is covered with water. Here we report a large enhancement of up to 2 × 105 in the SERS signal of the SLG on the patterned plasmonic nanostructure for a 532 nm excitation laser wavelength. We provide a detailed study of the light-graphene interactions by investigating the optical absorption in the SLG, the density of optical states at the location of the SLG, and the extraction efficiency of the SERS signal of the SLG. Our numerical calculations of both the excitation field and the emission rate enhancements support the experimental results. We find that the enhancement is due to the increase in the confinement of electromagnetic fields on the location of the SLG that results in enhanced light absorption in the graphene at the excitation wavelength. We also find that water droplets increase the density of optical radiative states at the location of the SLG, leading to enhanced spontaneous emission rate of graphene at its Raman emission wavelengths.

5.
ACS Sens ; 2(8): 1133-1138, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28726383

RESUMO

Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 103). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 1010 was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10-12 M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.

6.
Opt Express ; 23(16): 20549-62, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367907

RESUMO

We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

7.
Opt Express ; 20(7): 7516-25, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453431

RESUMO

A nanoplasmonic optical filtering technique based on a complementary split-ring resonator structure is proposed. The basic and modal properties of the square-nanoring are studied using the group theory. Degeneracy and non-degeneracy of the possible TM odd- and even-modes are characterized based on the symmetry elements of the ring structure. Distinctively, the proposed technique allows selecting and exciting the proper plasmonic modes of the nanoring in the side-coupled arrangement. It is found that the non-integer modes can be excited due to the presence of a metallic nano-wall. These modes are highly sensitive to the nano-wall dimensions, in contrast to the regular integer modes. Moreover, the transmission-line theory is used to derive the resonance condition of the modes. The results show the optical transmission spectrum of the investigated filter can be efficiently modified and tuned either by manipulation of the position or by variation of the width of the employed nano-wall inside the ring. The numerical results support the theoretical analysis.


Assuntos
Desenho Assistido por Computador , Filtração/instrumentação , Modelos Teóricos , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA