Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956846

RESUMO

The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 µg/mL and EC50 of 20.03 µg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 µL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.


Assuntos
Myrtaceae , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Biofilmes , Escherichia coli , Testes de Sensibilidade Microbiana , Myrtaceae/química , Óleos Voláteis/química , Staphylococcus aureus , Staphylococcus epidermidis
2.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502935

RESUMO

The effect of crump rubber on the dry sliding wear behavior of epoxy composites is investigated in the present study. Wear tests are carried out for three levels of crump rubber (10, 20, and 30 vol.%), normal applied load (30, 40, and 50 N), and sliding distance (1, 3, and 5 km). The wear behavior of crump rubber-epoxy composites is investigated against EN31 steel discs. The hybrid mathematical approach of Taguchi-coupled Grey Relational Analysis (GRA)-Principal Component Analysis (PCA) is used to examine the influence of crump rubber on the tribological response of composites. Mathematical and experimental results reveal that increasing crump rubber content reduces the wear rate of composites. Composites also show a significant decrease in specific wear values at higher applied loads. Furthermore, the coefficient of friction also shows a decreasing trend with an increase in crump rubber content, indicating the effectiveness of reinforcing crump rubber in a widely used epoxy matrix. Analysis of Variance (ANOVA) results also reveal that the crump rubber content in the composite is a significant parameter to influence the wear characteristic. The post-test temperature of discs increases with an increase in the applied load, while decreasing with an increase in filler loading. Worn surfaces are analyzed using scanning electron microscopy to understand structure-property correlations. Finally, existing studies available in the literature are compared with the wear data of the present study in the form of a property map.

3.
Entropy (Basel) ; 23(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34441209

RESUMO

This article presents an investigation of heat transfer in a porous medium adjacent to a vertical plate. The porous medium is subjected to a magnetohydrodynamic effect and suction velocity. The governing equations are nondepersonalized and converted into ordinary differential equations. The resulting equations are solved with the help of the finite difference method. The impact of various parameters, such as the Prandtl number, Grashof number, permeability parameter, radiation parameter, Eckert number, viscous dissipation parameter, and magnetic parameter, on fluid flow characteristics inside the porous medium is discussed. Entropy generation in the medium is analyzed with respect to various parameters, including the Brinkman number and Reynolds number. It is noted that the velocity profile decreases in magnitude with respect to the Prandtl number, but increases with the radiation parameter. The Eckert number has a marginal effect on the velocity profile. An increased radiation effect leads to a reduced thermal gradient at the hot surface.

4.
Entropy (Basel) ; 24(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052083

RESUMO

Indonesia has been blessed with excellent solar heat distribution, which can be used as renewable energy to heat water. Various technologies have been developed to utilize these inexhaustible thermodynamic resources, in the form of photons arrays, converted into concentrated heat for daily use, i.e., solar water heater. This renewable-based water heating system can provide significant energy efficiency, benefit the environment, and reduce energy use costs. This experimental study attempts to harvest the energy from the sun using a cylindrical through collector (CTC) type solar concentrator. The CTC was made of the solar reflective film (SRF) affixed to concentrator collector surfaces which was then mounted on an adjustable angle frame of the concentrator collector support. The heat generated from the concentrator was stored in water, and phase change material is embedded in the system to retain the heat longer. The research was carried out in Langsa City, Aceh, Indonesia. The results showed that water heaters using CTC systems could produce 16 L of hot water retained at 40-60 °C for four hours. With the addition of beeswax, the water temperature of the same capacity can be maintained at 40-60 °C for around 5 h. This technology demonstrated an excellent result that produces as much as 60 L of water per day, increasing solar thermal energy efficiency. This technology presented a great potential for replication or even for further development on an industrial scale.

5.
Environ Sci Pollut Res Int ; 28(10): 12881-12888, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33094462

RESUMO

Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters.


Assuntos
Conservação de Recursos Energéticos , Indústrias
6.
Sci Rep ; 10(1): 18851, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139793

RESUMO

The recent implication of circular economy in Australia spurred the demand for waste material utilization for value-added product generations on a commercial scale. Therefore, this experimental study emphasized on agricultural waste biomass, rice husk (RH) as potential feedstock to produce valuable products. Rice husk biochar (RB) was obtained at temperature: 180 °C, pressure: 70 bar, reaction time: 20 min with water via hydrothermal carbonization (HTC), and the obtained biochar yield was 57.9%. Enhancement of zeta potential value from - 30.1 to - 10.6 mV in RB presented the higher suspension stability, and improvement of surface area and porosity in RB demonstrated the wastewater adsorption capacity. Along with that, an increase of crystallinity in RB, 60.5%, also indicates the enhancement of the catalytic performance of the material significantly more favorable to improve the adsorption efficiency of transitional compounds. In contrast, an increase of the atomic O/C ratio in RB, 0.51 delineated high breakdown of the cellulosic component, which is favorable for biofuel purpose. 13.98% SiO2 reduction in RB confirmed ash content minimization and better quality of fuel properties. Therefore, the rice husk biochar through HTC can be considered a suitable material for further application to treat wastewater and generate bioenergy.

7.
Bioresour Technol ; 318: 123913, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32753242

RESUMO

Solid waste residues from the extraction of essential oils are projected to increase and need to be treated appropriately. Valorization of waste via pyrolysis can generate value-added products, such as chemicals and energy. The characterization of lemon myrtle residues (LMR) highlights their suitability for pyrolysis, with high volatile matter and low ash content. Thermogravimetric analysis/derivative thermogravimetric revealed the maximum pyrolytic degradation of LMR at 335 °C. The pyrolysis of LMR for bio-oil production was conducted in a fixed-bed reactor within a temperature range of 350-550 °C. Gas chromatography-mass spectrometry showed that the bio-oil contained abundant amounts of acetic acid, phenol, 3-methyl-1,2-cyclopentanedione, 1,2-benzenediol, guaiacol, 2-furanmethanol, and methyl dodecanoate. An increase in pyrolysis temperature led to a decrease in organic acid and ketones from 18.09% to 8.95% and 11.99% to 8.75%, respectively. In contrast, guaiacols and anhydrosugars increased from 24.23% to 30.05% and from 3.57% to 7.98%, respectively.


Assuntos
Myrtus , Óleos Voláteis , Biocombustíveis/análise , Temperatura Alta , Óleos , Óleos de Plantas , Polifenóis , Pirólise , Resíduos Sólidos
8.
Sci Total Environ ; 740: 139868, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32559527

RESUMO

This study investigated real world in-use vehicle emissions using two regulatory techniques simultaneously, namely on-road remote sensing (RS) systems and air quality (AQ) monitoring stations, aiming to provide a full pollution profile from tailpipe to roadside and atmosphere. Two large AQ and RS datasets collected during 2012-2018 were analyzed. The effects of various emission control programmes on the trends of tailpipe emissions and air quality were evaluated. Correlations between tailpipe emissions and roadside and ambient air quality were also explored. The results showed a decreasing trend of NO2 at both roadside and ambient AQ stations from 2013 to 2016, which was attributed to the intensive implementation of a series of vehicle emissions control programmes. Although NO2 was decreasing, O3 was generally increasing for all AQ stations. AQ data showed that O3 had little correlation with either NO2 or NOx, but was mainly determined by NO2/NOx ratio. Roadside NO2/NOx ratio increased first and then decreased or stabilized after 2014, while ambient NO2/NOx ratio increased steadily. RS data showed that the overall NO decreased quickly during 2012-2015 and then decreased moderately after 2015. The decrease was mainly attributed to the effective NO reduction from LPG vehicles. However, diesel NO remained high and reduced relatively slowly during the study period. Gasoline vehicles were relatively clean compared with LPG and diesel vehicles. Finally, good correlations were demonstrated between NO measured by RS sites and NOx measured by roadside AQ stations, indicating that vehicle emissions were the major contributor to roadside NOx pollution. Ambient NOx emissions could be affected by various sources, leading to different correlation levels between RS and ambient AQ results.

9.
Polymers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403227

RESUMO

A petroleum refinery heavily depends on crude oil as its main feedstock to produce liquid fuels and chemicals. In the long term, this unyielding dependency is threatened by the depletion of the crude oil reserve. However, in the short term, its price highly fluctuates due to various factors, such as regional and global security instability causing additional complexity on refinery production planning. The petroleum refining industries are also drawing criticism and pressure due to their direct and indirect impacts on the environment. The exhaust gas emission of automobiles apart from the industrial and power plant emission has been viewed as the cause of global warming. In this sense, there is a need for a feasible, sustainable, and environmentally friendly generation process of fuels and chemicals. The attention turns to the utilization of biomass as a potential feedstock to produce substitutes for petroleum-derived fuels and building blocks for biochemicals. Biomass is abundant and currently is still low in utilization. The biorefinery, a facility to convert biomass into biofuels and biochemicals, is still lacking in competitiveness to a petroleum refinery. An attractive solution that addresses both is by the integration of bio- and petroleum refineries. In this context, the right decision making in the process selection and technologies can lower the investment and operational costs and assure optimum yield. Process optimization based on mathematical programming has been extensively used to conduct techno-economic and sustainability analysis for bio-, petroleum, and the integration of both refineries. This paper provides insights into the context of crude oil and biomass as potential refinery feedstocks. The current optimization status of either bio- or petroleum refineries and their integration is reviewed with the focus on the methods to solve the multi-objective optimization problems. Internal and external uncertain parameters are important aspects in process optimization. The nature of these uncertain parameters and their representation methods in process optimization are also discussed.

10.
Environ Sci Pollut Res Int ; 27(21): 25956-25969, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378100

RESUMO

With the ever-increasing energy demands, fossil fuels are gradually depleting and eventually, these nonrenewable sources of energy will be exhausted. Hence, there is an urgent need to formulate alternative fuels that are both renewable and sustainable. Biomass is one of the reliable sources of energy because it is replenishable. Rice is the staple food in many countries, particularly in Asia. The number of paddy fields has increased tremendously over the years and is expected to increase in the future in response to the growing world population. This will lead to significant amounts of agricultural wastes annually, particularly rice straw. In some countries, open burning and soil incorporation are used to manage agricultural wastes. Open burning is the preferred method because it is inexpensive. However, this method is highly undesirable because of its detrimental impact on the environment resulting from the release of carbon dioxide and methane gas. Hence, it is important to develop an energy-harvesting method from rice straw for power generation. More studies need to be carried out on the availability and characteristics of rice straw as well as logistic analysis to assess the potential of rice straw for power generation. This paper is focused on reviewing studies pertaining to the characteristics and potential of rice straw for power generation, current rice straw management practices, and logistic analysis in order to develop a suitable energy-harvesting method from rice straw in Malaysia.


Assuntos
Fontes de Energia Bioelétrica , Oryza , Agricultura , Ásia , Malásia , Solo
11.
Polymers (Basel) ; 11(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618963

RESUMO

Membrane fouling is seen as the main culprit that hinders the widespread of membrane application in liquid-based filtration. Therefore, fouling management is key for the successful implementation of membrane processes, and it is done across all magnitudes. For optimum operation, membrane developments and surface modifications have largely been reported, including membrane surface patterning. Membrane surface patterning involves structural modification of the membrane surface to induce secondary flow due to eddies, which mitigate foulant agglomeration and increase the effective surface area for improved permeance and antifouling properties. This paper reviews surface patterning approaches used for fouling mitigation in water and wastewater treatments. The focus is given on the pattern formation methods and their effect on overall process performances.

12.
Crit Rev Biotechnol ; 39(6): 835-859, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31185749

RESUMO

Microalgae have been exploited for biofuel generation in the current era due to its enormous energy content, fast cellular growth rate, inexpensive culture approaches, accumulation of inorganic compounds, and CO2 sequestration. Currently, research is ongoing towards the advancement of the microalgae cultivation parameters to enhance the biomass yield. The main objective of this study was to delineate the progress of physicochemical parameters for microalgae cultivation such as gaseous transfer, mixing, light demand, temperature, pH, nutrients and the culture period. This review demonstrates the latest research trends on mass transfer coefficient of different microalgae culturing reactors, gas velocity optimization, light intensity, retention time, and radiance effects on microalgae cellular growth, temperature impact on chlorophyll production, and nutrient dosage ratios for cellulosic metabolism to avoid nutrient deprivation. Besides that, cultivation approaches for microalgae associated with mathematical modeling for different parameters, mechanisms of microalgal growth rate and doubling time have been elaborately described. Along with that, this review also documents potential lipid-carbohydrate-protein enriched microalgae candidates for biofuel, biomass productivity, and different cultivation conditions including open-pond cultivation, closed-loop cultivation, and photobioreactors. Various photobioreactor types, the microalgae strain, productivity, advantages, and limitations were tabulated. In line with microalgae cultivation, this study also outlines in detail numerous biofuels from microalgae.


Assuntos
Biocombustíveis , Biotecnologia , Microalgas , Biomassa , Fenômenos Químicos , Fotobiorreatores
13.
Polymers (Basel) ; 11(5)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086013

RESUMO

Membrane distillation (MD) is an attractive technology for desalination, mainly because its performance that is almost independent of feed solute concentration as opposed to the reverse osmosis process. However, its widespread application is still limited by the low water flux, low wetting resistance and high scaling vulnerability. This study focuses on addressing those limitations by developing a novel corrugated polyvinylidene difluoride (PVDF) membrane via an improved imprinting technique for MD. Corrugations on the membrane surface are designed to offer an effective surface area and at the same time act as a turbulence promoter to induce hydrodynamic by reducing temperature polarization. Results show that imprinting of spacer could help to induce surface corrugation. Pore defect could be minimized by employing a dual layer membrane. In short term run experiment, the corrugated membrane shows a flux of 23.1 Lm-2h-1 and a salt rejection of >99%, higher than the referenced flat membrane (flux of 18.0 Lm-2h-1 and similar rejection). The flux advantage can be ascribed by the larger effective surface area of the membrane coupled with larger pore size. The flux advantage could be maintained in the long-term operation of 50 h at a value of 8.6 Lm-2h-1. However, the flux performance slightly deteriorates over time mainly due to wetting and scaling. An attempt to overcome this limitation should be a focus of the future study, especially by exploring the role of cross-flow velocity in combination with the corrugated surface in inducing local mixing and enhancing system performance.

14.
Environ Sci Pollut Res Int ; 26(15): 14849-14866, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937750

RESUMO

Due to global warming and increasing price of fossil fuel, scientists all over the world have been trying to find reliable alternative fuels. One of the most potential candidates is renewable energy from biomass. The race for renewable energy from biomass has long begun and focused on to combat the deteriorating condition of the environment. Palm oil has been in the spotlight as an alternative of bioenergy sources to resolve fossil fuel problem due to its environment-friendly nature. This review will look deep into the origins of palm oil and how it is processed, bioproducts from this biomass, and oil palm biomass-based power plant in Malaysia. Palm oil is usually processed from oil palm fruits and other parts of the oil palm plant are candidates for raw material of bioproduct generation. Oil palm biomass can be turned into three subcategories: bioproduct, biofuels, and biopower. Focusing on biofuel, the biodiesel from palm oil will be explored in detail and its implication in Malaysia as one of the biggest producers of oil palm in the world will also be emphasized comprehensively. The paper presents the detail of a schematic flow diagram of a palm oil mill process of transforming oil palm into crude palm oil and it wastes. This paper will also discuss the current oil palm biomass power plants in Malaysia. Palm oil has been proven itself as a potential alternative to reduce negative environmental impact of global warming.


Assuntos
Biocombustíveis , Óleo de Palmeira , Centrais Elétricas , Biomassa , Malásia , Gerenciamento de Resíduos
15.
Environ Sci Pollut Res Int ; 25(16): 15307-15325, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29721797

RESUMO

Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.


Assuntos
Biocombustíveis/análise , Monóxido de Carbono/análise , Gasolina/análise , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Monóxido de Carbono/química , Óxidos de Nitrogênio/química
16.
ScientificWorldJournal ; 2014: 379582, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054179

RESUMO

This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 µm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems.


Assuntos
Cápsulas/síntese química , Carbono/química , Temperatura Alta , Cápsulas/química , Ácido Palmítico/química , Transição de Fase
17.
J Colloid Interface Sci ; 394: 490-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23380399

RESUMO

A microparticle material of gold/polystyrene-coated hollow titania was successfully synthesized. The synthesis steps involved hydrothermal synthesis of a carbon sphere from sucrose as a template, coating of the carbon sphere with titania, removal of the carbon sphere to produce hollow titania, followed by coating of polystyrene on the surface of hollow titania and then attachment of gold nanoparticles. It has been demonstrated that this material can float on water due to its low density and it is a potential catalyst for liquid-gas boundary catalysis in oxidation of benzyl alcohol by using molecular oxygen.

18.
Materials (Basel) ; 6(5): 1608-1620, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28809232

RESUMO

Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA