Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Can Vet J ; 65(3): 245-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434162

RESUMO

Objective: Several skin preparation techniques are used in electrocardiogram (ECG) monitoring of horses. The objective of this study was to determine which methods produce the greatest signal quality using textile electrodes and standard silver/silver chloride (Ag/AgCl) electrodes. Animals and samples: Electrocardiogram data were collected using textile and Ag/AgCl electrodes simultaneously for 4 skin preparation techniques in 6 horses. Procedure: The effects of skin preparation (cleansing with isopropyl alcohol, with or without shaving the hair) and the effects of the application of a conductive gel were assessed using metrics of signal quality. Results: Shaving and cleansing with alcohol had no effect on signal quality for either electrode type. The Ag/AgCl electrodes contain a solid gel, and the application of additional gel did not affect signal quality. Data quality was significantly improved when gel was applied to textile electrodes. Furthermore, there was no difference in signal quality between electrode types when gel was used. Conclusion and clinical relevance: This study suggests that skin preparation by cleansing and/or shaving does not have a significant effect on equine ECG signal quality. When gel is used, textile electrodes are a practical alternative for Ag/AgCl electrodes, as they produce ECG recordings of the same quality.


Impact de la méthode de préparation de la peau sur la qualité de l'électrocardiogramme chez le cheval. Objectif: Plusieurs techniques de préparation de la peau sont utilisées lors de la surveillance électrocardiographique (ECG) des chevaux. L'objectif de cette étude était de déterminer quelles méthodes produisent la meilleure qualité de signal en utilisant des électrodes textiles et des électrodes standard argent/chlorure d'argent (Ag/AgCl). Animaux et échantillons: Les données d'électrocardiogramme ont été obtenues simultanément à l'aide d'électrodes textiles et d'électrodes Ag/AgCl pour 4 techniques de préparation cutanée chez 6 chevaux. Procédure: Les effets de la préparation de la peau (nettoyage à l'alcool isopropylique, avec ou sans rasage des cheveux) et les effets de l'application d'un gel conducteur ont été évalués à l'aide de métriques de qualité du signal. Résultats: Le rasage et le nettoyage à l'alcool n'ont eu aucun effet sur la qualité du signal pour les deux types d'électrodes. Les électrodes Ag/AgCl contiennent un gel solide et l'application de gel supplémentaire n'a pas affecté la qualité du signal. La qualité des données a été considérablement améliorée lorsque le gel a été appliqué sur des électrodes textiles. De plus, il n'y avait aucune différence dans la qualité du signal entre les types d'électrodes lorsque du gel était utilisé. Conclusion et pertinence clinique: Cette étude suggère que la préparation de la peau par nettoyage et/ou rasage n'a pas d'effet significatif sur la qualité du signal ECG équin. Lorsque du gel est utilisé, les électrodes textiles constituent une alternative pratique aux électrodes Ag/AgCl, car elles produisent des enregistrements ECG de même qualité.(Traduit par Dr Serge Messier).


Assuntos
2-Propanol , Eletrocardiografia , Compostos de Prata , Animais , Cavalos , Eletrocardiografia/veterinária , Etanol
2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420772

RESUMO

Photoplethysmography (PPG) is used to measure blood volume changes in the microvascular bed of tissue. Information about these changes along time can be used for estimation of various physiological parameters, such as heart rate variability, arterial stiffness, and blood pressure, to name a few. As a result, PPG has become a popular biological modality and is widely used in wearable health devices. However, accurate measurement of various physiological parameters requires good-quality PPG signals. Therefore, various signal quality indexes (SQIs) for PPG signals have been proposed. These metrics have usually been based on statistical, frequency, and/or template analyses. The modulation spectrogram representation, however, captures the second-order periodicities of a signal and has been shown to provide useful quality cues for electrocardiograms and speech signals. In this work, we propose a new PPG quality metric based on properties of the modulation spectrum. The proposed metric is tested using data collected from subjects while they performed various activity tasks contaminating the PPG signals. Experiments on this multi-wavelength PPG dataset show the combination of proposed and benchmark measures significantly outperforming several benchmark SQIs with improvements of 21.3% BACC (balanced accuracy) for green, 21.6% BACC for red, and 19.0% BACC for infrared wavelengths, respectively, for PPG quality detection tasks. The proposed metrics also generalize for cross-wavelength PPG quality detection tasks.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Humanos , Frequência Cardíaca/fisiologia , Pressão Sanguínea , Volume Sanguíneo , Processamento de Sinais Assistido por Computador , Algoritmos
3.
Animals (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766401

RESUMO

Electrocardiograms (ECGs), and associated heart rate (HR) and heart rate variability (HRV) measurements, are essential in assessing equine cardiovascular health and fitness. Smart textiles have gained popularity, but limited validation work has been conducted. Therefore, the objective of this study was to compare HR and HRV data obtained using a smart textile system (Myant) to the gold-standard telemetric device (Televet). Simultaneous ECGs were obtained using both systems in seven horses at rest and during a submaximal exercise test. Bland-Altman tests were used to assess agreement between the two devices. Strong to perfect correlations without significant differences between the two devices were observed for all metrics assessed. During exercise, mean biases of 0.31 bpm (95% limits of agreement: -1.99 to 2.61) for HR, 1.43 ms (-11.48 to 14.33) for standard deviation of R-R intervals (SDRR), and 0.04 (-2.30 to 2.38) for the HRV triangular index (TI) were observed. A very strong correlation was found between the two devices for HR (r = 0.9993, p < 0.0001) and for HRV parameters (SDRR r = 0.8765, p < 0.0001; TI r = 0.8712, p < 0.0001). This study demonstrates that a smart textile system is reliable for assessment of HR and HRV of horses at rest and during submaximal exercise.

4.
Animals (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36496775

RESUMO

Electrocardiography (ECG) is an essential tool in assessing equine health and fitness. However, standard ECG devices are expensive and rely on the use of adhesive electrodes, which may become detached and are associated with reduced ECG quality over time. Smart textile electrodes composed of stainless-steel fibers have previously been shown to be a suitable alternative in horses at rest and during exercise. The objective of this study was to compare ECG quality using a smart textile girth band knit with silver and carbon yarns to standard adhesive silver/silver chloride (Ag/AgCl) electrodes. Simultaneous three-lead ECGs were recorded using a smart textile band and Ag/AgCl electrodes in 22 healthy, mixed-breed horses that were unrestrained in stalls. ECGs were compared using the following quality metrics: Kurtosis (k) value, Kurtosis signal quality index (kSQI), percentage of motion artifacts (%MA), peak signal amplitude, and heart rate (HR). Two-way ANOVA with Tukey's multiple comparison tests was conducted to compare each metric. No significant differences were found in any of the assessed metrics between the smart textile band and Ag/AgCl electrodes, with the exception of peak amplitude. Kurtosis and kSQI values were excellent for both methods (textile mean k = 21.8 ± 6.1, median kSQI = 0.98 [0.92−1.0]; Ag/AgCl k = 21.2 ± 7.6, kSQI = 0.99 [0.97−1.0]) with <0.5% (<1 min) of the recording being corrupted by MAs for both. This study demonstrates that smart textiles are a practical and reliable alternative to the standard electrodes typically used in ECG monitoring of horses.

5.
J Rehabil Assist Technol Eng ; 9: 20556683211061995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127129

RESUMO

INTRODUCTION: In recent years, electromyography (EMG) has been increasingly studied for wearable applications. Conventional gel electrodes for electrophysiological recordings have limited use in everyday applications such as prosthetic control or muscular therapy at home. This study investigates the efficacy and feasibility of dry-contact electrode materials employed in smart textiles for EMG recordings. METHODS: Dry-contact electrode materials were selected and implemented on textile substrates. Using these electrodes, EMG was recorded from the forearm of able-bodied subjects. 25% and 50% isometric maximum voluntary contractions were captured. A comparative investigation was performed against gel electrodes, assessing the effect of material properties on signal fidelity and strength compared. RESULTS: When isolating for electrode surface area and pressure, 31 of the 40 materials demonstrated strong positive correlations in their mean PSD with gel electrodes (r > 95, p < 0.001). The inclusion of ionic liquids in the material composition, and using raised or flat electrodes, did not demonstrate a significant effect in signal quality. CONCLUSIONS: For EMG dry-contact electrodes, comparing the performance against gel electrodes for the application with the selected material is important. Other factors recommended to be studied are electrodes' durability and long-term stability.

6.
IEEE J Biomed Health Inform ; 26(1): 243-253, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34018942

RESUMO

Smart textiles provide an opportunity to simultaneously record various electrophysiological signals, e.g., ECG, from the human body in a non-invasive and continuous manner. Accurate processing of ECG signals recorded using textile sensors is challenging due to the very low signal-to-noise ratio (SNR). Signal processing algorithms that can extract ECG signals out of textile-based electrode recordings, despite low SNR are needed. Presently, there are no textile ECG datasets available to develop, test and validate these algorithms. In this paper we attempted to model textile ECG signals by adding the textile sensor noise to open access ECG signals. We employed the linear predictive coding method to model different features of this noise. By approximating the linear predictive coding residual signals using Kernel Density Estimation, an artificial textile ECG noise signal was generated by filtering the residual signal with the linear predictive coding coefficients. The synthetic textile sensor noise was added to the MIT-BIH Arrhythmia Database (MITDB), thus creating Textile-like ECG dataset consisting of 108 trials (30 min each). Furthermore, a Python code for generating textile-like ECG signals with variable SNR was also made available online. Finally, to provide a benchmark for the performance of R-peak detection algorithms on textile ECG, the five common R-peak detection algorithms: Pan & Tompkins, improved Pan & Tompkins (in Biosppy), Hamilton, Engelse, and Khamis, were tested on textile-like MITDB. This work provides an approach to generating noisy textile ECG signals, and facilitating the development, testing, and evaluation of signal processing algorithms for textile ECGs.


Assuntos
Artefatos , Processamento de Sinais Assistido por Computador , Algoritmos , Eletrocardiografia/métodos , Humanos , Razão Sinal-Ruído , Têxteis
7.
Biomed Eng Online ; 20(1): 68, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34247646

RESUMO

BACKGROUND: Continuous long-term electrocardiography monitoring has been increasingly recognized for early diagnosis and management of different types of cardiovascular diseases. To find an alternative to Ag/AgCl gel electrodes that are improper for this application scenario, many efforts have been undertaken to develop novel flexible dry textile electrodes integrated into the everyday garments. With significant progresses made to address the potential issues (e.g., low signal-to-noise ratio, high skin-electrode impedance, motion artifact, and low durability), the lack of standard evaluation procedure hinders the further development of dry electrodes (mainly the design and optimization). RESULTS: A standard testing procedure and framework for skin-electrode impedance measurement is demonstrated for the development of novel dry textile electrodes. Different representative electrode materials have been screen-printed on textile substrates. To verify the performance of dry textile electrodes, impedance measurements are conducted on an agar skin model using a universal setup with consistent frequency and pressure. In addition, they are demonstrated for ECG signals acquisition, in comparison to those obtained using conventional gel electrodes. CONCLUSIONS: Dry textile electrodes demonstrated similar impedance when in raised or flat structures. The tested pressure variations had an insignificant impact on electrode impedance. Looking at the effect of impedance on ECG signals, a noticeable effect on ECG signal performance metrics was not observed. Therefore, it is suggested that impedance alone is possibly not the primary indicator of signal quality. As well, the developed methods can also serve as useful guidelines for future textile dry-electrode design and testing for practical ECG monitoring applications.


Assuntos
Eletrocardiografia , Têxteis , Artefatos , Impedância Elétrica , Eletrodos
8.
Front Neurosci ; 14: 534619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328841

RESUMO

Visual evoked potentials (VEPs) to periodic stimuli are commonly used in brain computer interfaces for their favorable properties such as high target identification accuracy, less training time, and low surrounding target interference. Conventional periodic stimuli can lead to subjective visual fatigue due to continuous and high contrast stimulation. In this study, we compared quasi-periodic and chaotic complex stimuli to common periodic stimuli for use with VEP-based brain computer interfaces (BCIs). Canonical correlation analysis (CCA) and coherence methods were used to evaluate the performance of the three stimulus groups. Subjective fatigue caused by the presented stimuli was evaluated by the Visual Analogue Scale (VAS). Using CCA with the M2 template approach, target identification accuracy was highest for the chaotic stimuli (M = 86.8, SE = 1.8) compared to the quasi-periodic (M = 78.1, SE = 2.6, p = 0.008) and periodic (M = 64.3, SE = 1.9, p = 0.0001) stimulus groups. The evaluation of fatigue rates revealed that the chaotic stimuli caused less fatigue compared to the quasi-periodic (p = 0.001) and periodic (p = 0.0001) stimulus groups. In addition, the quasi-periodic stimuli led to lower fatigue rates compared to the periodic stimuli (p = 0.011). We conclude that the target identification results were better for the chaotic group compared to the other two stimulus groups with CCA. In addition, the chaotic stimuli led to a less subjective visual fatigue compared to the periodic and quasi-periodic stimuli and can be suitable for designing new comfortable VEP-based BCIs.

9.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 2762-2772, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320813

RESUMO

Brain-computer interfaces based on code-modulated visual evoked potentials provide high information transfer rates, which make them promising alternative communication tools. Circular shifts of a binary sequence are used as the flickering pattern of several visual stimuli, where the minimum correlation between them is critical for recognizing the target by analyzing the EEG signal. Implemented sequences have been borrowed from communication theory without considering visual system physiology and related ergonomics. Here, an approach is proposed to design optimum stimulus sequences considering physiological factors, and their superior performance was demonstrated for a 6-target c-VEP BCI system. This was achieved by defining a time-factor index on the frequency response of the sequence, while the autocorrelation index ensured a low correlation between circular shifts. A modified version of the non-dominated sorting genetic algorithm II (NSGAII) multi-objective optimization technique was implemented to find, for the first time, 63-bit sequences with simultaneously optimized autocorrelation and time-factor indexes. The selected optimum sequences for general (TFO) and 6-target (6TO) BCI systems, were then compared with m-sequence by conducting experiments on 16 participants. Friedman tests showed a significant difference in perceived eye irritation between TFO and m-sequence (p = 0.024). Generalized estimating equations (GEE) statistical test showed significantly higher accuracy for 6TO compared to m-sequence (p = 0.006). Evaluation of EEG responses showed enhanced SNR for the new sequences compared to m-sequence, confirming the proposed approach for optimizing the stimulus sequence. Incorporating physiological factors to select sequence(s) used for c-VEP BCI systems improves their performance and applicability.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Exame Neurológico , Estimulação Luminosa
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4563-4566, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019009

RESUMO

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.


Assuntos
Dispositivos Eletrônicos Vestíveis , Artefatos , Humanos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Têxteis
11.
Biomed Eng Online ; 19(1): 48, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546233

RESUMO

BACKGROUND: The development of wearable health monitoring systems is garnering tremendous interest in research, technology and commercial applications. Their ability of providing unique capabilities in continuous, real-time, and non-invasive tracking of the physiological markers of users can provide insights into the performance and health of individuals. Electrocardiogram (ECG) signals are of particular interest, as cardiovascular disease is the leading cause of death globally. Monitoring heart health and its conditions such as ventricular disturbances and arrhythmias can be achieved through evaluating various features of ECG such as R-peaks, QRS complex, T-wave, and P-wave. Despite recent advances in biosensors for wearable applications, most of the currently available solutions rely solely on a single system attached to the body, limiting the ability to obtain reliable and multi-location biosignals. However, in engineering systems, sensor fusion, which is the optimal integration and processing of data from multiple sensors, has been a common theme and should be considered for wearables. In recent years, due to an increase in the availability and variety of different types of sensors, the possibility of achieving sensor fusion in wearable systems has become more attainable. Sensor fusion in multi-sensing systems results in significant enhancements of information inferences compared to those from systems with a sole sensor. One step towards the development of sensor fusion for wearable health monitoring systems is the accessibility to multiple reliable electrophysiological signals, which can be recorded continuously. RESULTS: In this paper, we develop a textile-based multichannel ECG band that has the ability to measure ECG from multiple locations on the waist. As a proof of concept, we demonstrate that ECG signals can be reliably obtained from different locations on the waist where the shape of the QRS complex is nearly comparable with recordings from the chest using traditional gel electrodes. In addition, we develop a probabilistic approach-based on prediction and update strategies-to detect R-peaks from noisy textile data in different statuses, including sitting, standing, and jogging. In this approach, an optimal search method is utilized to detect R-peaks based on the history of the intervals between previously detected R-peaks. We show that the performance of our probabilistic approach in R-peak detection is significantly better than that based on Pan-Tompkins and optimal-threshold methods. CONCLUSION: A textile-based multichannel ECG band was developed to track the heart rate changes from multiple locations on the waist. We demonstrated that (i) the ECG signal can be detected from different locations on the waist, and (ii) the accuracy of the detected R-peaks from textile sensors was improved by using our proposed probabilistic approach. Despite the limitations of the textile sensors that might compromise the quality of ECG signals, we anticipate that the textile-based multichannel ECG band can be considered as an effective wearable system to facilitate the development of sensor fusion methodology for pervasive and non-invasive health monitoring through continuous tracking of heart rate variability (HRV) from the waist. In addition, from the commercialization point of view, we anticipate that the developed band has the potential to be integrated into garments such as underwear, bras or pants so that individuals can use it on a daily basis.


Assuntos
Eletrocardiografia/instrumentação , Têxteis , Tronco , Dispositivos Eletrônicos Vestíveis , Algoritmos , Artefatos , Humanos , Movimento , Processamento de Sinais Assistido por Computador
12.
Basic Clin Neurosci ; 10(3): 245-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462979

RESUMO

INTRODUCTION: Brain-Computer Interface (BCI) systems provide a communication pathway between users and systems. BCI systems based on Steady-State Visually Evoked Potentials (SSVEP) are widely used in recent decades. Different feature extraction methods have been introduced in the literature to estimate SSVEP responses to BCI applications. METHODS: In this study, the new algorithms, including Canonical Correlation Analysis (CCA), Least Absolute Shrinkage and Selection Operator (LASSO), L1-regularized Multi-way CCA (L1-MCCA), Multi-set CCA (MsetCCA), Common Feature Analysis (CFA), and Multiple Logistic Regression (MLR) are compared using proper statistical methods to determine which one has better performance with the least number of EEG electrodes. RESULTS: It was found that MLR, MsetCCA, and CFA algorithms provided the highest performances and significantly outperformed CCA, LASSO, and L1-MCCA algorithms when using 8 EEG channels. However, when using only 1 or 2 EEG channels d, CFA method provided the highest F-scores. This algorithm not only outperformed MLR and MsetCCA when applied on different electrode montages but also provided the fastest computation time on the test set. CONCLUSION: Although MLR method has already demonstrated to have higher performance in comparison with other frequency recognition algorithms, this study showed that in a practical SSVEP-based BCI system with 1 or 2 EEG channels and short-time windows, CFA method outperforms other algorithms. Therefore, it is proposed that CFA algorithm is a promising choice for the expansion of practical SSVEP-based BCI systems.

13.
PLoS One ; 14(3): e0213197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840671

RESUMO

Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-sequences as a modulating codes for their broadband spectrum and correlation property. However, subjective fatigue of the presented codes has been a problem. In this study, we introduce chaotic codes containing broadband spectrum and similar correlation property. We examined whether the introduced chaotic codes could be decoded from EEG signals and also compared the subjective fatigue level with m-sequence codes in normal subjects. We generated chaotic code from one-dimensional logistic map and used it with conventional 31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we presented these codes visually and recorded EEG signals from the corresponding codes for their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beamforming (STB) methods were used for target identification and comparison of responses. Additionally, we compared the subjective self-declared fatigue using VAS caused by presented m-sequence and chaotic codes. The introduced chaotic code was decoded from EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes for all subjects respectively. The achieved accuracies in all subjects were not significantly different in m-sequence and chaotic codes. There was significant reduction in subjective fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods. The chaotic codes significantly reduced subjective fatigue compared to the m-sequence codes.


Assuntos
Potenciais Evocados Visuais/fisiologia , Fadiga/patologia , Adulto , Algoritmos , Encéfalo/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
14.
IEEE Trans Neural Syst Rehabil Eng ; 26(11): 2200-2209, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30307871

RESUMO

Brain-computer interfaces based on steady-state visual evoked potentials are promising communication systems for people with speech and motor disabilities. However, reliable SSVEP response requires user's attention, which degrades over time due to significant eye-fatigue when low-frequency visual stimuli (5-15 Hz) are used. Previous studies have shown that eye-fatigue can be reduced using high-frequency flickering stimuli (>25 Hz). Here, it is quantitatively demonstrated that the performance of a high-frequency SSVEP BCI decreases over time, but this amount of decrease can be compensated effectively by using two proposed adaptive algorithms. This leaded to a robust alternative communication system for practical applications. The asynchronous spelling system implemented in this study uses a threshold-based version of LASSO algorithm for frequency recognition. In long online experiments, when participants typed a sentence with the BCI system for 16 times, accuracy of the system was close to its maximum along the experiment. However, regression analysis on typing speed of each sentence demonstrated a significant decrease in all 7 subjects ( ) when thresholds obtained from a calibration test were kept fixed over the experiment. In comparison, no significant change in typing speed was observed when the proposed adaptive algorithms were used. The analysis of variances revealed that the average typing speed of the last four sentences when using adaptive relational algorithm (8.7 char/min) was significantly higher than the tolerance-based algorithm (8.1 char/min) and significantly above 6 char/min when the fixed thresholds were used. Therefore, the relational algorithm proposed in this paper could successfully compensate for the effect of fatigue on performance of the SSVEP BCI system.


Assuntos
Interfaces Cérebro-Computador , Potenciais Somatossensoriais Evocados , Fadiga Muscular , Desempenho Psicomotor , Adulto , Algoritmos , Calibragem , Auxiliares de Comunicação para Pessoas com Deficiência , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
15.
Front Hum Neurosci ; 12: 201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892219

RESUMO

Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

16.
J Med Signals Sens ; 8(4): 215-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30603613

RESUMO

BACKGROUND: Brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs) provide high rates of accuracy and information transfer rate, but need user's attention to flickering visual stimuli. This quickly leads to eye-fatigue when the flickering frequency is in the low-frequency range. High-frequency flickering stimuli (>30 Hz) have been proposed with significantly lower eye-fatigue. However, SSVEP responses in this frequency range are remarkably weaker, leading to doubts about usability of high-frequency stimuli to develop efficient BCI systems. The purpose of this study was to evaluate if a practical SSVEP Speller can be developed with Repetitive Visual Stimuli in the high-frequency range. METHODS: An asynchronous high-frequency (35-40 Hz) speller for typing in Persian language was developed using five flickering visual stimuli. Least absolute shrinkage and selection operator algorithm with two user-calibrated thresholds was used to detect the user's selections. A total of 14 volunteers evaluated the system in an ordinary office environment to type 9 sentences consist of 81 characters with a multistage virtual keyboard. RESULTS: Despite very high performance of 6.9 chars/min overall typing speed, average accuracy of 98.3%, and information transfer rate of 64.9 bpm for eight of the participants, the other six participants had serious difficulty in spelling with the system and could not complete the typing experiment. CONCLUSIONS: The results of this study in accordance with some previous studies suggest that high rate of illiteracy in high-frequency SSVEP-based BCI systems may be a major burden for their practical application.

17.
J Med Signals Sens ; 6(4): 197-202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028495

RESUMO

Wet Ag/AgCl electrodes, although very popular in clinical diagnosis, are not appropriate for expanding applications of wearable biopotential recording systems which are used repetitively and for a long time. Here, the development of a low-cost and low-noise active dry electrode is presented. The performance of the new electrodes was assessed for recording electrocardiogram (ECG) and electroencephalogram (EEG) in comparison with that of typical gel-based electrodes in a series of long-term recording experiments. The ECG signal recorded by these electrodes was well comparable with usual Ag/AgCl electrodes with a correlation up to 99.5% and mean power line noise below 6.0 µVRMS. The active electrodes were also used to measure alpha wave and steady state visual evoked potential by recording EEG. The recorded signals were comparable in quality with signals recorded by standard gel electrodes, suggesting that the designed electrodes can be employed in EEG-based rehabilitation systems and brain-computer interface applications. The mean power line noise in EEG signals recorded by the active electrodes (1.3 µVRMS) was statistically lower than when conventional gold cup electrodes were used (2.0 µVRMS) with a significant level of 0.05, and the new electrodes appeared to be more resistant to the electromagnetic interferences. These results suggest that the developed low-cost electrodes can be used to develop wearable monitoring systems for long-term biopotential recording.

18.
J Med Signals Sens ; 6(1): 47-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014612

RESUMO

Measurement of the stroke volume (SV) and its changes over time can be very helpful for diagnosis of dysfunctions in the blood circulatory system and monitoring their treatments. Impedance cardiography (ICG) is a simple method of measuring the SV based on changes in the instantaneous mean impedance of the thorax. This method has received much attention in the last two decades because it is noninvasive, easy to be used, and applicable for continuous monitoring of SV as well as other hemodynamic parameters. The aim of this study was to develop a low-cost portable ICG system with high accuracy for monitoring SV. The proposed wireless system uses a tetrapolar configuration to measure the impedance of the thorax at 50 kHz. The system consists of carefully designed precise voltage-controlled current source, biopotential recorder, and demodulator. The measured impedance was analyzed on a computer to determine SV. After evaluating the system's electronic performance, its accuracy was assessed by comparing its measurements with the values obtained from Doppler echocardiography (DE) on 5 participants. The implemented ICG system can noninvasively provide a continuous measure of SV. The signal to noise ratio of the system was measured above 50 dB. The experiments revealed that a strong correlation (r = 0.89) exists between the measurements by the developed system and DE (P < 0.05). ICG as the sixth vital sign can be measured simply and reliably by the developed system, but more detailed validation studies should be conducted to evaluate the system performance. There is a good promise to upgrade the system to a commercial version domestically for clinical use in the future.

19.
Comput Biol Med ; 70: 163-173, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848728

RESUMO

Human computer interfaces (HCI) provide new channels of communication for people with severe motor disabilities to state their needs, and control their environment. Some HCI systems are based on eye movements detected from the electrooculogram. In this study, a wearable HCI, which implements a novel adaptive algorithm for detection of saccadic eye movements in eight directions, was developed, considering the limitations that people with disabilities have. The adaptive algorithm eliminated the need for calibration of the system for different users and in different environments. A two-stage typing environment and a simple game for training people with disabilities to work with the system were also developed. Performance of the system was evaluated in experiments with the typing environment performed by six participants without disabilities. The average accuracy of the system in detecting eye movements and blinking was 82.9% at first tries with an average typing rate of 4.5cpm. However an experienced user could achieve 96% accuracy and 7.2cpm typing rate. Moreover, the functionality of the system for people with movement disabilities was evaluated by performing experiments with the game environment. Six people with tetraplegia and significant levels of speech impairment played with the computer game several times. The average success rate in performing the necessary eye movements was 61.5%, which increased significantly with practice up to 83% for one participant. The developed system is 2.6×4.5cm in size and weighs only 15g, assuring high level of comfort for the users.


Assuntos
Algoritmos , Pessoas com Deficiência , Movimentos Oculares , Interface Usuário-Computador , Humanos , Masculino
20.
Med Biol Eng Comput ; 53(8): 713-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25835214

RESUMO

Interferential current (IFC) is one of the most popular electrical currents used in electrotherapy. However, there have been limited studies investigating how this stimulation affects the nerve fibers. The aim of this computational study was to evaluate the temporal and spatial patterns of fiber activation in IFC therapy for different modulation and carrier frequencies. The interferential currents were applied by two pairs of point electrodes perpendicular to each other in an infinite homogeneous medium, and a model of myelinated nerve fibers was implemented in NEURON to study the neural response. The activation thresholds for different positions of the fiber and the resultant firing patterns were evaluated. The results suggest that the fibers may fire continuously or in bursts, with frequencies equal or higher than the modulation frequency, or may be blocked, based on their position relative to the electrodes, the modulation frequency and the stimulus strength. The results confirm traditional belief about the role of the modulation frequency in firing frequency of nerve fibers and describe a possible mechanism for less sensation of pain, due to blockage of the fibers by the high-frequency nature of the interferential currents.


Assuntos
Terapia por Estimulação Elétrica , Modelos Neurológicos , Fibras Nervosas/fisiologia , Biologia Computacional , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA