Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(32): 42947-42956, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39103240

RESUMO

Organometallic tin-oxo-hydroxo cage compounds offer a promising photoresist platform for extreme ultraviolet photolithography (EUVL). Their reactivity is dominated by the facile breaking of the tin-carbon bonds upon photon or electron irradiation. As the cage is dicationic, it exists as a complex with anions for charge compensation. In the present work, we explore the n-butyltin-oxo cage with two tetrakis(pentafluorophenyl)borate counteranions (TinPFPB). In contrast to the small counterions that are typically used, the bulky PFPB anion absorbs a substantial fraction (∼30%) of the impinging EUV radiation (13.5 nm, 92 eV), and it has its own reactivity upon photoionization. When thin films of the complex are irradiated with EUV radiation at low doses, a positive-tone development is possible, which is rather unique as all other known tin-oxo cage resists show a negative tone (cross-linking) behavior. We propose that the initial positive tone behavior is a result of the chemical modification of the Sn cluster by fragments of the borate anions. For comparison, we include the tetrakis(p-tolyl)borate anion (TB) in the study, which has similar bulkiness, and its complex with the n-butyltin-oxo cage (TinTB) shows the usual negative tone EUV resist behavior. This negative-tone behavior for our control experiment rules out a hypothesis based purely on the steric hindrance of the anion as the cause of the different EUV reactivity.

2.
ACS Appl Mater Interfaces ; 15(29): 35483-35494, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449783

RESUMO

The blur caused by the nonzero mean free path of electrons in photoresists exposed by extreme ultraviolet lithography has detrimental consequences on patterning resolution, but its effect is difficult to quantify experimentally. So far, most mean free path calculations use the dielectric formalism, which is an approximation valid in the optical limit and fails at low kinetic energy. In this work, we used a modified substrate-overlayer technique that exploited the attenuation of the Si 2p core level originating specifically from the native silicon dioxide to evaluate the attenuation of electrons traveling through 2 and 4 nm of photoresist overlayers to provide a close estimation of the inelastic mean free path relevant for photoresist lithography patterning and for electron microscopy. The photoemission spectra were collected in the proximity of the Si 2p edge (binding energy ∼101 eV) using synchrotron light of energy ℏω ranging between 120 and 550 eV. The photoresist films were prototypical chemically amplified resists based on organic copolymer of poly hydroxystyrene and tertbutyl methacrylate with and without triphenyl sulfonium perfluoro-1-butanesufonate photoacid generator and trioctylamine quencher. The inelastic mean free path of electrons, in the range that is relevant for photoresist exposure in extreme ultraviolet lithography (20-92 eV), was found to be between 1 and 2 nm. At higher kinetic energy, the mean free path increased, consistently with the well-known behavior. The presence of the photoacid generator and quencher did not change the mean free path, within experimental error. Our results are discussed and compared with the existing literature on organic molecules measured via dielectric formalism and electron transmission experiments.

3.
J Am Chem Soc ; 144(48): 21878-21886, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444673

RESUMO

The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.

4.
Opt Express ; 30(16): 29735-29748, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299141

RESUMO

Multilayer beamsplitter polarizers have been developed for improved solar polarimetry at key spectral lines. The advantage of beamsplitter polarizers is that a single device separates s from p polarization; this helps minimize attenuation and enables a more compact and lighter polarimeter, which is important for space instruments. Polarizers based on Al/AlF3 multilayers were prepared for both C IV (155 nm) and Mg II (280 nm) lines, and based on Al/MgF2 multilayers for H Lyman α line (121.6 nm). Polarizers were designed to mainly reflect (transmit) s (p) polarization. Beamsplitter performance and throughput are shown to compare advantageously with polarizers in the literature. Beamsplitter polarizers kept a valuable performance after several years of ageing.

5.
ACS Mater Au ; 2(3): 343-355, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36855383

RESUMO

The absorption of extreme ultraviolet (EUV) radiation by a photoresist strongly depends on its atomic composition. Consequently, elements with a high EUV absorption cross section can assist in meeting the demand for higher photon absorbance by the photoresist to improve the sensitivity and reduce the photon shot noise induced roughness. In this work, we enhanced the EUV absorption of the methacrylic acid ligands of Zn oxoclusters by introducing fluorine atoms. We evaluated the lithography performance of this fluorine-rich material as a negative tone EUV photoresist along with extensive spectroscopic and microscopic studies, providing deep insights into the underlying mechanism. UV-vis spectroscopy studies demonstrate that the presence of fluorine in the oxocluster enhances its stability in the thin films to the ambient atmosphere. However, the EUV photoresist sensitivity (D 50) of the fluorine-rich oxocluster is decreased compared to its previously studied methacrylic acid analogue. Scanning transmission X-ray microscopy and in situ X-ray photoelectron spectroscopy in combination with FTIR and UV-vis spectroscopy were used to gain insights into the chemical changes in the material responsible for the solubility switch. The results support decarboxylation of the ligands and subsequent radical-induced polymerization reactions in the thin film upon EUV irradiation. The rupture of carbon-fluorine bonds via dissociative electron attachment offers a parallel way of generating radicals. The mechanistic insights obtained here will be applicable to other hybrid materials and potentially pave the way for the development of EUV materials with better performance.

6.
Opt Express ; 29(22): 36086-36099, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809028

RESUMO

Performing experiments at free-electron lasers (FELs) requires an exhaustive knowledge of the pulse temporal and spectral profile, as well as the focal spot shape and size. Operating FELs in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral regions calls for designing ad-hoc optical layouts to transport and characterize the EUV/SXR beam, as well as tailoring its spatial dimensions at the focal plane down to sizes in the few micrometers range. At the FERMI FEL (Trieste, Italy) this task is carried out by the Photon Analysis Delivery and Reduction System (PADReS). In particular, to meet the different experimental requests on the focal spot shape and size, a proper tuning of the optical systems is required, and this should be monitored by means of dedicated techniques. Here, we present and compare two reconstruction methods for spot characterization: single-shot imprints captured via ablation on a poly(methyl methacrylate) sample (PMMA) and pulse profiles retrieved by means of a Hartmann wavefront sensor (WFS). By recording complementary datasets at and nearby the focal plane, we exploit the tomography of the pulse profile along the beam propagation axis, as well as a qualitative and quantitative comparison between these two reconstruction methods.

7.
Struct Dyn ; 7(5): 054302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32984434

RESUMO

Ultrafast phenomena on a femtosecond timescale are commonly examined by pump-probe experiments. This implies multiple measurements, where the sample under investigation is pumped with a short light pulse and then probed with a second pulse at various time delays to follow its dynamics. Recently, the principle of streaking extreme ultraviolet (XUV) pulses in the temporal domain has enabled recording the dynamics of a system within a single pulse. However, separate pump-probe experiments at different absorption edges still lack a unified timing, when comparing the dynamics in complex systems. Here, we report on an experiment using a dedicated optical element and the two-color emission of the FERMI XUV free-electron laser to follow the charge and spin dynamics in composite materials at two distinct absorption edges, simultaneously. The sample, consisting of ferromagnetic Fe and Ni layers, separated by a Cu layer, is pumped by an infrared laser and probed by a two-color XUV pulse with photon energies tuned to the M-shell resonances of these two transition metals. The experimental geometry intrinsically avoids any timing uncertainty between the two elements and unambiguously reveals an approximately 100 fs delay of the magnetic response with respect to the electronic excitation for both Fe and Ni. This delay shows that the electronic and spin degrees of freedom are decoupled during the demagnetization process. We furthermore observe that the electronic dynamics of Ni and Fe show pronounced differences when probed at their resonance, while the demagnetization dynamics are similar. These observations underline the importance of simultaneous investigation of the temporal response of both charge and spin in multi-component materials. In a more general scenario, the experimental approach can be extended to continuous energy ranges, promising the development of jitter-free transient absorption spectroscopy in the XUV and soft X-ray regimes.

8.
J Synchrotron Radiat ; 26(Pt 5): 1462-1472, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490133

RESUMO

FERMI is the first and only seeded EUV-SXR free-electron laser (FEL) facility available to users; it operates at Elettra - Sincrotrone Trieste (Italy) and it presents five operating endstations. Three of them, namely LDM (Low Density Matter), DiProI (Diffraction and Projection Imaging) and MagneDyn (Magneto-Dynamical studies), use a Kirkpatrick-Baez (KB) active X-ray optics system to focus the FEL pulses into the experimental chambers. The present work reports on the final results of the upgraded KB Active Optics Systems (KAOS), which have been mechanically modified in order to improve stability and repeatability with respect to the original design. The results have been obtained on both the FERMI FEL lines, FEL1 and FEL2, and are particularly relevant for the latter as it is the low-wavelength line recently opened to users. After a thorough description of the new mechanical layout of the system and the aspects that have been improved after the refurbishment, a set of simulations of the optical performances are presented. The code used to simulate the behavior of KAOS is WISEr, a physical-optics-based tool, which is freely accessible, and integrated into the Oasys platform, that takes into account the specific surface metrology characterization of the beamline mirrors, including figure errors and microroughness power spectral density. The results of WISEr are then used as a reference for the actual optimization of the optical system. This procedure relies heavily on a wavefront sensor (WFS) mounted out of focus to optimize the refocusing mirrors alignment as well as their curvature bending (by minimization of the coefficients of the Zernike wavefront expansion). Moreover, the WFS data are used to reconstruct the focal spot parameters by means of a back-propagation of the electric field. Finally, these results are compared with those obtained after the FEL ablation of a PMMA layer positioned on the focal plane, and analyzed ex situ in a post-mortem fashion. The mechanically refurbished optical system and the multi-technique alignment approach, aimed at optimizing the mirrors' curvature, pitch and roll angles, allowed a focal spot of 1.8 µm × 2.4 µm at 4.14 nm wavelength (FEL2) to be inferred, confirmed by the PMMA ablation imprints.

9.
J Synchrotron Radiat ; 26(Pt 5): 1503-1513, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490138

RESUMO

In this work the longitudinal shifts of the focal plane of an ellipsoidal mirror induced by longitudinal shifts of the source and by the optical figure error of the mirror itself are investigated. The case of an ideal mirror illuminated by a Gaussian beam is considered first, deriving an analytical formula predicting the source-to-focus shift. Then the realistic case of a mirror affected by surface shape defects is examined, by taking into account metrological data and numerically solving the Huygens-Fresnel integral. The analytical and numerical solutions in the ideal and real cases are compared. Finally, it is shown that an additional dependence of the focal shift is introduced on the wavelength and the pointing angle of the source. Both effects are investigated by numerical computations. We limit the treatment in the XUV spectral range, choosing as a test bench the Kirkpatrick-Baez mirror system of the DiProI and LDM end-stations and at the FERMI seeded free-electron laser (FEL). The work is primarily aimed at disentangling the different causes of focal shift at FEL light sources, where source position, wavelength and pointing angle are either tunable or rapidly fluctuating. The method can be easily extended to parabolic reflectors and refractors (lenses) with other kinds of illuminating sources and wavelengths.

10.
Nat Commun ; 9(1): 214, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335602

RESUMO

Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.


Assuntos
Elétrons , Lasers , Compostos de Silício , Raios Ultravioleta , Dicroísmo Circular , Cobalto , Platina , Raios X
11.
J Synchrotron Radiat ; 25(Pt 1): 44-51, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271750

RESUMO

Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented.

12.
Nat Commun ; 7: 13688, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905401

RESUMO

Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

13.
Nat Commun ; 7: 10343, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757813

RESUMO

The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

14.
J Synchrotron Radiat ; 23(1): 29-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698042

RESUMO

A new high-performance method for the free-electron laser (FEL) focused beam diagnosis has been successfully tested at the FERMI FEL in Trieste, Italy. The novel pixelated phosphor detector (PPD) consists of micrometric pixels produced by classical UV lithography and dry etching technique, fabricated on a silicon substrate, arranged in a hexagonal geometry and filled with suitable phosphors. It has been demonstrated that the overall resolution of the system has increased by reducing the diffusion of the light in the phosphors. Various types of PPD have been produced and tested, demonstrating a high resolution in the beam profile and the ability to measure the actual spot size shot-to-shot with an unprecedented resolution. For these reasons, the proposed detector could become a reference technique in the FEL diagnosis field.

15.
J Synchrotron Radiat ; 23(1): 35-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698043

RESUMO

Measurement of the emission wavelength and the spectral content of the photon radiation is essential information for both machine and experimental physicists at a free-electron laser (FEL) user facility. Knowledge of the photon beam spectral properties is needed during the machine optimization and for performing machine studies (i.e. monitoring the change of the FEL output as a function of the machine parameters). The experimentalists, on the other hand, need to know the photon beam spectral distribution of the source, shot to shot, to discriminate the acquired data. Consequently, the main requirement for the instrument, supposed to obtain this information, is the capability of working on-line and shot-to-shot, with minimal perturbation of the beam delivered to the experimental stations. Starting from the grating fundamental equations, the conceptual design of the FERMI Pulse-Resolved Energy Spectrometer: Transparent and On-line (PRESTO) is presented, explaining the optical design in detail. The performance of PRESTO, in terms of resolving power, efficiency and spectral response, is also discussed. Finally, some useful features beyond the usual measurement of the energy spectrum are reported, as they have been routinely used by both machine and experimental physicists.

16.
J Synchrotron Radiat ; 23(1): 98-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698050

RESUMO

The future Magneto Dynamics (MagneDyn) beamline will be devoted to study the electronic states and the local magnetic properties of excited and transient states of complex systems by means of the time-resolved X-ray absorption spectroscopy technique. The beamline will use FERMI's high-energy source covering the wavelength range from 60 nm down to 1.3 nm. An on-line photon energy spectrometer will allow spectra to be measured with high resolution while delivering most of the beam to the end-stations. Downstream the beam will be possibly split and delayed, by means of a delay line, and then focused with a set of active Kirkpatrick-Baez mirrors. These mirrors will be able to focus the radiation in one of the two MagneDyn experimental chambers: the electromagnet end-station and the resonant inelastic X-ray scattering end-station. After an introduction of the MagneDyn scientific case, the layout will be discussed showing the expected performances of the beamline.

17.
J Synchrotron Radiat ; 23(1): 106-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698051

RESUMO

TeraFERMI is the new terahertz (THz) beamline for pump-probe studies on the femtosecond time-scale, under construction at the FERMI free-electron laser (FEL) facility in Trieste, Italy. The beamline will take advantage of the coherent radiation emitted by the spent electrons from the FEL undulators, before being dumped. This will result in short, coherent, high-power THz pulses to be used as a pump beam, in order to modulate structural properties of matter, thereby inducing phase transitions. The TeraFERMI beamline collects THz radiation in the undulator hall and guides it along a beam pipe which is approximately 30 m long, extending across the safety hutch and two shielding walls. Here the optical design, which will allow the efficient transport of the emitted THz radiation in the experimental hall, is presented.

18.
J Synchrotron Radiat ; 23(1): 132-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698055

RESUMO

The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

19.
Appl Opt ; 54(8): 1910-7, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25968365

RESUMO

The low expected absorption of Ca in the extreme ultraviolet (EUV) makes it an attractive material for multilayers and filters because most materials in nature strongly absorb the EUV. Few optical constant data had been reported for Ca. In this research, Ca films of various thicknesses were deposited on grid-supported C films and their transmittance measured in situ from the visible to the soft x-rays. The measurement range contains M2,3 and L2,3 absorption edges. Transmittance measurements were used to obtain the Ca extinction coefficient k. A minimum k of 0.017 was obtained at ∼23 eV, which makes Ca a promising low-absorption material for EUV coatings. A second spectral range of interest for its low absorption is below the Ca L3 edge at ∼343 eV. Measured k data and extrapolations were used to calculate the refractive index n using Kramers-Krönig relations. This is the first self-consistent data set on Ca covering a wide spectral range including the EUV.

20.
J Synchrotron Radiat ; 22(3): 565-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931069

RESUMO

The Photon Analysis Delivery and REduction System of FERMI (PADReS) has been routinely used during the machine commissioning and operations of FERMI since 2011. It has also served the needs of several user runs at the facility from late 2012. The system is endowed with online and shot-to-shot diagnostics giving information about intensity, spatial-angular distribution, spectral content, as well as other diagnostics to determine coherence, pulse length etc. Moreover, PADReS is capable of manipulating the beam in terms of intensity and optical parameters. Regarding the optics, besides a standard refocusing system based on an ellipsoidal mirror, the Kirkpatrick-Baez active optics systems are key elements and have been used intensively to meet users' requirements. A general description of the system is given, together with some selected results from the commissioning/operations/user beam time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA