Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(50): 18344-18351, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38060502

RESUMO

Protein properties and interactions have been widely investigated by using external labels. However, the micromolar sensitivity of the current dyes limits their applicability due to the high material consumption and assay cost. In response to this challenge, we synthesized a series of cyanine5 (Cy5) dye-based quencher molecules to develop an external dye technique to probe proteins at the nanomolar protein level in a high-throughput one-step assay format. Several families of Cy5 dye-based quenchers with ring and/or side-chain modifications were designed and synthesized by introducing organic small molecules or peptides. Our results showed that steric hindrance and electrostatic interactions are more important than hydrophobicity in the interaction between the luminescent negatively charged europium-chelate-labeled peptide (Eu-probe) and the quencher molecules. The presence of substituents on the quencher indolenine rings reduces their quenching property, whereas the increased positive charge on the indolenine side chain improved the interaction between the quenchers and the luminescent compound. The designed quencher structures entirely altered the dynamics of the Eu-probe (protein-probe) for studying protein stability and interactions, as we were able to reduce the quencher concentration 100-fold. Moreover, the new quencher molecules allowed us to conduct the experiments using neutral buffer conditions, known as the peptide-probe assay. These improvements enabled us to apply the method in a one-step format for nanomolar protein-ligand interaction and protein profiling studies instead of the previously developed two-step protocol. These improvements provide a faster and simpler method with lower material consumption.


Assuntos
Corantes , Peptídeos , Carbocianinas/química , Peptídeos/química , Luminescência , Corantes Fluorescentes/química
2.
Sci Rep ; 13(1): 20066, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973851

RESUMO

Thermal shift assay (TSA) with altered temperature has been the most widely used method for monitoring protein stability for drug research. However, there is a pressing need for isothermal techniques as alternatives. This urgent demand arises from the limitations of TSA, which can sometimes provide misleading ranking of protein stability and fail to accurately reflect protein stability under physiological conditions. Although differential scanning fluorimetry has significantly improved throughput in comparison to differential scanning calorimetry and differential static light scattering throughput, all these methods exhibit moderate sensitivity. In contrast, current isothermal chemical denaturation (ICD) techniques may not offer the same throughput capabilities as TSA, but it provides more precise information about protein stability and interactions. Unfortunately, ICD also suffers from limited sensitivity, typically in micromolar range. We have developed a novel method to overcome these challenges, namely throughput and sensitivity. The novel Förster Resonance Energy Transfer (FRET)-Probe as an external probe is highly applicable to isothermal protein stability monitoring but also to conventional TSA. We have investigated ICD for multiple proteins with focus on KRASG12C with covalent inhibitors and three chemical denaturants performed at nanomolar protein concentration. Data showed corresponding inhibitor-induced stabilization of KRASG12C to those reported by nucleotide exchange assay.


Assuntos
Proteínas , Proteínas Proto-Oncogênicas p21(ras) , Estabilidade Proteica , Fluorometria , Varredura Diferencial de Calorimetria , Desnaturação Proteica
3.
Anal Bioanal Chem ; 415(27): 6689-6700, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714971

RESUMO

Guanosine triphosphate (GTP) and adenosine triphosphate (ATP) are essential nucleic acid building blocks and serve as energy molecules for a wide range of cellular reactions. Cellular GTP concentration fluctuates independently of ATP and is significantly elevated in numerous cancers, contributing to malignancy. Quantitative measurement of ATP and GTP has become increasingly important to elucidate how concentration changes regulate cell function. Liquid chromatography-coupled mass spectrometry (LC-MS) and capillary electrophoresis-coupled MS (CE-MS) are powerful methods widely used for the identification and quantification of biological metabolites. However, these methods have limitations related to specialized instrumentation and expertise, low throughput, and high costs. Here, we introduce a novel quantitative method for GTP concentration monitoring (GTP-quenching resonance energy transfer (QRET)) in homogenous cellular extracts. CE-MS analysis along with pharmacological control of cellular GTP levels shows that GTP-QRET possesses high dynamic range and accuracy. Furthermore, we combined GTP-QRET with luciferase-based ATP detection, leading to a new technology, termed QT-LucGTP&ATP, enabling high-throughput compatible dual monitoring of cellular GTP and ATP in a homogenous fashion. Collectively, GTP-QRET and QT-LucGTP&ATP offer a unique, high-throughput opportunity to explore cellular energy metabolism, serving as a powerful platform for the development of novel therapeutics and extending its usability across a range of disciplines.


Assuntos
Trifosfato de Adenosina , Adenosina , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Trifosfato de Adenosina/metabolismo , Guanosina , Cromatografia Líquida
4.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806100

RESUMO

Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Bioensaio , Varredura Diferencial de Calorimetria , Fluorometria/métodos , Estabilidade Proteica
5.
Anal Bioanal Chem ; 414(15): 4509-4518, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35581427

RESUMO

Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.


Assuntos
Viroses , Vírus , Humanos , Luminescência , Vírion
6.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638669

RESUMO

Extracellular vesicles (EVs) are found in all biological fluids, providing potential for the identification of disease biomarkers such as colorectal cancer (CRC). EVs are heavily glycosylated with specific glycoconjugates such as tetraspanins, integrins, and mucins, reflecting the characteristics of the original cell offering valuable targets for detection of CRC. We report here on europium-nanoparticle (EuNP)-based assay to detect and characterize different surface glycoconjugates of EVs without extensive purification steps from five different CRC and the HEK 293 cell lines. The promising EVs candidates from cell culture were clinically evaluated on small panel of serum samples including early-stage (n = 11) and late-stage (n = 11) CRC patients, benign condition (n = 11), and healthy control (n = 10). The majority of CRC cell lines expressed tetraspanin sub-population and glycovariants of integrins and conventional tumor markers. The subpopulation of CD151 having CD63 expression (CD151CD63) was significantly (p = 0.001) elevated in early-stage CRC (8 out of 11) without detecting any benign and late-stage samples, while conventional CEA detected mostly late-stage CRC (p = 0.045) and with only four early-stage cases. The other glycovariant assays such as CEACon-A, CA125WGA, CA 19.9Ma696, and CA 19.9Con-A further provided some complementation to the CD151CD63 assay. These results indicate the potential application of CD151CD63 assay for early detection of CRC patients in human serum.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Glicoconjugados/sangue , Glicoconjugados/metabolismo , Nanopartículas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Antígeno Ca-125/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo , Adulto Jovem
7.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198602

RESUMO

Proteases are a group of enzymes with a catalytic function to hydrolyze peptide bonds of proteins. Proteases regulate the activity, signaling mechanism, fate, and localization of many proteins, and their dysregulation is associated with various pathological conditions. Proteases have been identified as biomarkers and potential therapeutic targets for multiple diseases, such as acquired immunodeficiency syndrome, cardiovascular diseases, osteoporosis, type 2 diabetes, and cancer, where they are essential to disease progression. Thus, protease inhibitors and inhibitor-like molecules are interesting drug candidates. To study proteases and their substrates and inhibitors, simple, rapid, and sensitive protease activity assays are needed. Existing fluorescence-based assays enable protease monitoring in a high-throughput compatible microtiter plate format, but the methods often rely on either molecular labeling or synthetic protease targets that only mimic the hydrolysis site of the true target proteins. Here, we present a homogenous, label-free, and time-resolved luminescence utilizing the protein-probe method to assay proteases with native and denatured substrates at nanomolar sensitivity. The developed protein-probe method is not restricted to any single protein or protein target class, enabling digestion and substrate fragmentation studies with the natural unmodified substrate proteins. The versatility of the assay for studying protease targets was shown by monitoring the digestion of a substrate panel with different proteases. These results indicate that the protein-probe method not only monitors the protease activity and inhibition, but also studies the substrate specificity of individual proteases.


Assuntos
Ensaios Enzimáticos/métodos , Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Desnaturação Proteica , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA