Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(5): 1011-1022.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38183989

RESUMO

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.


Assuntos
Caenorhabditis elegans , Feromônios , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Feromônios/metabolismo , Feromônios/biossíntese , Feromônios/química , Proteínas de Caenorhabditis elegans/metabolismo , Tioléster Hidrolases/metabolismo
2.
J Med Genet ; 61(2): 176-181, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37798098

RESUMO

BACKGROUND: Expanded genetic screening before conception or during prenatal care can provide a more comprehensive evaluation of heritable fetal diseases. This study aimed to provide a large cohort to evaluate the significance of expanded carrier screening and to consolidate the role of expanded genetic screening in prenatal care. METHODS: This multicentre, retrospective cohort study was conducted between 31 December 2019 and 21 July 2022. A screening panel containing 302 genes and next-generation sequencing were used for the evaluation. The patients were referred from obstetric clinics, infertility centres and medical centres. Genetic counsellors conducted consultation for at least 15 min before and after screening. RESULTS: A total of 1587 patients were screened, and 653 pairs were identified. Among the couples who underwent the screening, 62 (9.49%) had pathogenic variants detected on the same genes. In total, 212 pathogenic genes were identified in this study. A total of 1173 participants carried at least one mutated gene, with a positive screening rate of 73.91%. Among the pathogenic variants that were screened, the gene encoding gap junction beta-2 (GJB2) exhibited the highest prevalence, amounting to 19.85%. CONCLUSION: Next-generation sequencing carrier screening provided additional information that may alter prenatal obstetric care by 9.49%. Pan-ethnic genetic screening and counselling should be suggested for couples of fertile age.


Assuntos
Aconselhamento , Testes Genéticos , Gravidez , Feminino , Humanos , Triagem de Portadores Genéticos , Estudos Retrospectivos , Estudos Prospectivos
3.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214941

RESUMO

Cold-activated thermogenesis of brown adipose tissues (BAT) is vital for the survival of animals under cold stress and also inhibits the development of tumours. The development of small-molecule tools that target thermogenesis pathways could lead to novel therapies against cold, obesity, and even cancer. Here, we identify a chemical signal that is produced in beetles in the winter to activate fat thermogenesis. This hormone elevates the basal body temperature by increasing cellular mitochondrial density and uncoupling in order to promote beetle survival. We demonstrate that this hormone activates UCP4- mediated uncoupled respiration through adipokinetic hormone receptor (AKHR). This signal serves as a novel fat-burning activator that utilizes a conserved mechanism to promote thermogenesis not only in beetles, nematode and flies, but also in mice, protecting the mice against cold and tumor growth. This hormone represents a new strategy to manipulate fat thermogenesis.

4.
Adv Wound Care (New Rochelle) ; 12(12): 696-709, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37051706

RESUMO

Significance: Aquaporins and ion channels establish and regulate gradients of calcium, sodium, potassium, chloride, water, and protons in the epidermis. These elements have been found to play significant roles in skin biology and wound healing. In this study, we review our understanding of these channels and ion gradients, with a special emphasis on their role in acute wound healing. Recent Advances: Specifically, we assess the temporal and spatial arrangements of ions and their respective channels in the intact skin and during wound and healing to provide a novel perspective of the role of ionic gradients through the various stages of wound healing. Critical Issues: The roles of gradients of ions and channels in wound healing are currently not well understood. A collective analysis of their traits and arrangements in the skin during wound healing may provide a new perspective and understanding of the functionality of gradients of ions and channels in skin biology and wound healing. Future Directions: It is important to elucidate how the gradients of ions and ion channels regulate and facilitate wound healing. A better understanding of the ionic environments may identify novel therapeutic targets and improved strategies to promote wound healing and possibly treat other cutaneous diseases.


Assuntos
Aquaporinas , Água , Epiderme , Cicatrização/fisiologia , Canais Iônicos
5.
Am J Med Sci ; 363(5): 373-387, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35081404

RESUMO

Experimental and clinical studies have conclusively demonstrated that lowering elevated low-density lipoprotein cholesterol levels results in fewer major adverse cardiac events. Over the past few decades, statins have become the mainstay of lipid-lowering therapy, contributing significantly to the reduction of lipids, and providing patients with a cost-effective approach. However, with growing evidence in support of combination therapies providing increased benefits to certain patient populations, such as those intolerant to statins, there is an urgent need to investigate the safety and efficacy of alternative lipid-lowering drugs. In this paper, we review the current alternative and adjuvant cholesterol targeting agents. We further discuss the clinical trials that have evaluated the safety and efficacy of these alternative and adjuvant therapies as well as their implications for practical use. These drugs target levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or lipoprotein(a) as treatments for hyperlipidemia and atherosclerotic cardiovascular disease.


Assuntos
Anticolesterolemiantes , Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Anticolesterolemiantes/uso terapêutico , Aterosclerose/tratamento farmacológico , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/tratamento farmacológico , Colesterol , LDL-Colesterol , Humanos , Hipolipemiantes/uso terapêutico
6.
J Am Chem Soc ; 142(32): 13645-13650, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32702987

RESUMO

The nematode Caenorhabditis elegans produces a broad family of pheromones, known as the ascarosides, that are modified with a variety of groups derived from primary metabolism. These modifications are essential for the diverse activities of the ascarosides in development and various behaviors, including attraction, aggregation, avoidance, and foraging. The mechanism by which these different groups are added to the ascarosides is poorly understood. Here, we identify a family of over 30 enzymes, which are homologous to mammalian carboxylesterase (CES) enzymes, and show that a number of these enzymes are responsible for the selective addition of specific modifications to the ascarosides. Through stable isotope feeding experiments, we demonstrate the in vivo activity of the CES-like enzymes and provide direct evidence that the acyl-CoA synthetase ACS-7, which was previously implicated in the attachment of certain modifications to the ascarosides in C. elegans, instead activates the side chains of certain ascarosides for shortening through ß-oxidation. Our data provide a key to the combinatorial logic that gives rise to different modified ascarosides, which should greatly facilitate the exploration of the specific biological functions of these pheromones in the worm.


Assuntos
Caenorhabditis elegans/enzimologia , Carboxilesterase/metabolismo , Coenzima A Ligases/metabolismo , Animais , Glicolipídeos/biossíntese , Glicolipídeos/química , Estrutura Molecular
7.
J Am Mosq Control Assoc ; 36(3): 139-151, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600584

RESUMO

Emergent macrophytes play critical roles in water treatment processes of free-water surface constructed treatment wetlands. Management strategies for plant biomass affect wetland function and mosquito populations. Sinking of harvested macrophyte biomass is thought to provide organic carbon that enhances denitrifying bacteria important for nutrient removal while concomitantly reducing harborage for mosquitoes. The effects of sinking versus floating dried plant biomass (California bulrush [Schoenoplectus californicus]) on immature mosquito abundance and water quality (nutrient levels, oxygen demand, and physicochemical variables) were examined in mesocosms (28-m2 ponds or 1.4-m2 wading pools) under different flow regimes in 4 studies. The numbers of mosquito larvae in earthen ponds with floating vegetation were greater than in ponds with sunken vegetation on most dates but did not differ significantly between the 2 vegetation treatments in experiments using wading pools. Differences of the abundance of Anopheles larvae between the 2 vegetation management treatments were larger than for Culex larvae when naturally occurring larval mosquito predators were present. At high turnover rates (>2 pond volumes/day), water quality did not differ significantly between the vegetation management treatments and the water supply. At low turnover rates (approximately 2-6% of water volume/day), water quality differed significantly between the 2 vegetation management treatments and the water supply. Sinking vegetation can enhance the effectiveness of mosquito control but, depending on water management practices, may raise the concentrations of water quality constituents in discharges that are regulated under the Clean Water Act.


Assuntos
Anopheles/fisiologia , Culex/fisiologia , Controle de Mosquitos/métodos , Plantas , Qualidade da Água , Áreas Alagadas , Animais , Anopheles/crescimento & desenvolvimento , California , Culex/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA