Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Rep ; 14(1): 2810, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308077

RESUMO

Myeloproliferative neoplasms (MPNs) encompass a diverse group of hematologic disorders driven by mutations in JAK2, CALR, or MPL. The prevailing working model explaining how these driver mutations induce different disease phenotypes is based on the decisive influence of the cellular microenvironment and the acquisition of additional mutations. Here, we report increased levels of chromatin segregation errors in hematopoietic cells stably expressing CALRdel52 or JAK2V617F mutations. Our investigations employing murine 32DMPL and human erythroleukemic TF-1MPL cells demonstrate a link between CALRdel52 or JAK2V617F expression and a compromised spindle assembly checkpoint (SAC), a phenomenon contributing to error-prone mitosis. This defective SAC is associated with imbalances in the recruitment of SAC factors to mitotic kinetochores upon CALRdel52 or JAK2V617F expression. We show that JAK2 mutant CD34 + MPN patient-derived cells exhibit reduced expression of the master mitotic regulators PLK1, aurora kinase B, and PP2A catalytic subunit. Furthermore, the expression profile of mitotic regulators in CD34 + patient-derived cells allows to faithfully distinguish patients from healthy controls, as well as to differentiate primary and secondary myelofibrosis from essential thrombocythemia and polycythemia vera. Altogether, our data suggest alterations in mitotic regulation as a potential driver in the pathogenesis in MPN.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Animais , Humanos , Camundongos , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Microambiente Tumoral
2.
Epigenetics Chromatin ; 16(1): 42, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880732

RESUMO

Cell-cell communication is mediated by membrane receptors and their ligands, such as the Eph/ephrin system, orchestrating cell migration during development and in diverse cancer types. Epigenetic mechanisms are key for integrating external "signals", e.g., from neighboring cells, into the transcriptome in health and disease. Previously, we reported ephrinA5 to trigger transcriptional changes of lncRNAs and protein-coding genes in cerebellar granule cells, a cell model for medulloblastoma. LncRNAs represent important adaptors for epigenetic writers through which they regulate gene expression. Here, we investigate a lncRNA-mediated targeting of DNMT1 to specific gene loci by the combined power of in silico modeling of RNA/DNA interactions and wet lab approaches, in the context of the clinically relevant use case of ephrinA5-dependent regulation of cellular motility of cerebellar granule cells. We provide evidence that Snhg15, a cancer-related lncRNA, recruits DNMT1 to the Ncam1 promoter through RNA/DNA triplex structure formation and the interaction with DNMT1. This mediates DNA methylation-dependent silencing of Ncam1, being abolished by ephrinA5 stimulation-triggered reduction of Snhg15 expression. Hence, we here propose a triple helix recognition mechanism, underlying cell motility regulation via lncRNA-targeted DNA methylation in a clinically relevant context.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , DNA , Movimento Celular
3.
Clin Chem ; 69(11): 1283-1294, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37708296

RESUMO

BACKGROUND: Cell-type specific DNA methylation (DNAm) can be employed to determine the numbers of leukocyte subsets in blood. In contrast to conventional methods for leukocyte counts, which are based on cellular morphology or surface marker protein expression, the cellular deconvolution based on DNAm levels is applicable for frozen or dried blood. Here, we further enhanced targeted DNAm assays for leukocyte counts in clinical application. METHODS: DNAm profiles of 40 different studies were compiled to identify CG dinucleotides (CpGs) with cell-type specific DNAm using a computational framework, CimpleG. DNAm levels at these CpGs were then measured with digital droplet PCR in venous blood from 160 healthy donors and 150 patients with various hematological disorders. Deconvolution was further validated with venous blood (n = 75) and capillary blood (n = 31) that was dried on Whatman paper or on Mitra microsampling devices. RESULTS: In venous blood, automated cell counting or flow cytometry correlated well with epigenetic estimates of relative leukocyte counts for granulocytes (r = 0.95), lymphocytes (r = 0.97), monocytes (r = 0.82), CD4 T cells (r = 0.84), CD8 T cells (r = 0.94), B cells (r = 0.96), and NK cells (r = 0.72). Similar correlations and precisions were achieved for dried blood samples. Spike-in with a reference plasmid enabled accurate epigenetic estimation of absolute leukocyte counts from dried blood samples, correlating with conventional venous (r = 0.86) and capillary (r = 0.80) blood measurements. CONCLUSIONS: The advanced selection of cell-type specific CpGs and utilization of digital droplet PCR analysis provided accurate epigenetic blood counts. Analysis of dried blood facilitates self-sampling with a finger prick, thereby enabling easier accessibility to testing.


Assuntos
Metilação de DNA , Leucócitos , Humanos , Contagem de Leucócitos , Monócitos/metabolismo , Linfócitos B/metabolismo , Proteínas de Membrana/metabolismo
4.
Genome Biol ; 24(1): 161, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430364

RESUMO

DNA methylation signatures are usually based on multivariate approaches that require hundreds of sites for predictions. Here, we propose a computational framework named CimpleG for the detection of small CpG methylation signatures used for cell-type classification and deconvolution. We show that CimpleG is both time efficient and performs as well as top performing methods for cell-type classification of blood cells and other somatic cells, while basing its prediction on a single DNA methylation site per cell type. Altogether, CimpleG provides a complete computational framework for the delineation of DNAm signatures and cellular deconvolution.


Assuntos
Processamento de Proteína Pós-Traducional , Metilação , Motivos de Nucleotídeos
5.
Front Pharmacol ; 14: 1212392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469867

RESUMO

The management of patients with chronic myeloid leukemia (CML) has been revolutionized by the introduction of tyrosine kinase inhibitors (TKIs), which induce deep molecular responses so that treatment can eventually be discontinued, leading to treatment-free remission (TFR) in a subset of patients. Unfortunately, leukemic stem cells (LSCs) often persist and a fraction of these can again expand in about half of patients that attempt TKI discontinuation. In this study, we show that presence of myelofibrosis (MF) at the time of diagnosis is a factor associating with TFR failure. Fibrotic transformation is governed by the action of several cytokines, and interestingly, some of them have also been described to support LSC persistence. At the cellular level, these could be produced by both malignant cells and by components of the bone marrow (BM) niche, including megakaryocytes (MKs) and mesenchymal stromal cells (MSCs). In our cohort of 57 patients, around 40% presented with MF at diagnosis and the number of blasts in the peripheral blood and BM was significantly elevated in patients with higher grade of MF. Employing a CML transgenic mouse model, we could observe higher levels of alpha-smooth muscle actin (α-SMA) in the BM when compared to control mice. Short-term treatment with the TKI nilotinib, efficiently reduced spleen weight and BCR::ABL1 mRNA levels, while α-SMA expression was only partially reduced. Interestingly, the number of MKs was increased in the spleen of CML mice and elevated in both BM and spleen upon nilotinib treatment. Analysis of human CML-vs healthy donor (HD)-derived MSCs showed an altered expression of gene signatures reflecting fibrosis as well as hematopoietic support, thus suggesting MSCs as a potential player in these two processes. Finally, in our cohort, 12 patients qualified for TKI discontinuation, and here we observed that all patients who failed TFR had BM fibrosis at diagnosis, whereas this was only the case in 25% of patients with achieved TFR, further supporting the link between fibrosis and LSC persistence.

6.
Leukemia ; 37(7): 1474-1484, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161070

RESUMO

The persistence of leukemic stem cells (LSCs) represents a problem in the therapy of chronic myeloid leukemia (CML). Hence, it is of utmost importance to explore the underlying mechanisms to develop new therapeutic approaches to cure CML. Using the genetically engineered ScltTA/TRE-BCR::ABL1 mouse model for chronic phase CML, we previously demonstrated that the loss of the docking protein GAB2 counteracts the infiltration of mast cells (MCs) in the bone marrow (BM) of BCR::ABL1 positive mice. Here, we show for the first time that BCR::ABL1 drives the cytokine independent expansion of BM derived MCs and sensitizes them for FcεRI triggered degranulation. Importantly, we demonstrate that genetic mast cell deficiency conferred by the Cpa3Cre allele prevents BCR::ABL1 induced splenomegaly and impairs the production of pro-inflammatory cytokines. Furthermore, we show in CML patients that splenomegaly is associated with high BM MC counts and that upregulation of pro-inflammatory cytokines in patient serum samples correlates with tryptase levels. Finally, MC-associated transcripts were elevated in human CML BM samples. Thus, our study identifies MCs as essential contributors to disease progression and suggests considering them as an additional target in CML therapy. Mast cells play a key role in the pro-inflammatory tumor microenvironment of the bone marrow. Shown is a cartoon summarizing our results from the mouse model. BCR::ABL1 transformed MCs, as part of the malignant clone, are essential for the elevation of pro-inflammatory cytokines, known to be important in disease initiation and progression.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Camundongos , Animais , Mastócitos/metabolismo , Esplenomegalia/etiologia , Esplenomegalia/prevenção & controle , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Citocinas , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Modelos Animais de Doenças , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral
7.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37130522

RESUMO

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Assuntos
Células M , Nódulos Linfáticos Agregados , Intestinos , Intestino Delgado , Diferenciação Celular , Mucosa Intestinal
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982353

RESUMO

Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mastocitose Sistêmica , Humanos , Mastocitose Sistêmica/diagnóstico , Mastócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Mutação
10.
Ann Hematol ; 100(12): 2943-2956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390367

RESUMO

Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing-associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.


Assuntos
Antígenos CD34/genética , Transtornos Mieloproliferativos/genética , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Humanos , Policitemia Vera/genética , Mielofibrose Primária/genética , Trombocitemia Essencial/genética
11.
BMC Biol ; 18(1): 178, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234153

RESUMO

BACKGROUND: The complex composition of different cell types within a tissue can be estimated by deconvolution of bulk gene expression profiles or with various single-cell sequencing approaches. Alternatively, DNA methylation (DNAm) profiles have been used to establish an atlas for multiple human tissues and cell types. DNAm is particularly suitable for deconvolution of cell types because each CG dinucleotide (CpG site) has only two states per DNA strand-methylated or non-methylated-and these epigenetic modifications are very consistent during cellular differentiation. So far, deconvolution of DNAm profiles implies complex signatures of many CpGs that are often measured by genome-wide analysis with Illumina BeadChip microarrays. In this study, we investigated if the characterization of cell types in tissue is also feasible with individual cell type-specific CpG sites, which can be addressed by targeted analysis, such as pyrosequencing. RESULTS: We compiled and curated 579 Illumina 450k BeadChip DNAm profiles of 14 different non-malignant human cell types. A training and validation strategy was applied to identify and test for cell type-specific CpGs. We initially focused on estimating the relative amount of fibroblasts using two CpGs that were either hypermethylated or hypomethylated in fibroblasts. The combination of these two DNAm levels into a "FibroScore" correlated with the state of fibrosis and was associated with overall survival in various types of cancer. Furthermore, we identified hypomethylated CpGs for leukocytes, endothelial cells, epithelial cells, hepatocytes, glia, neurons, fibroblasts, and induced pluripotent stem cells. The accuracy of this eight CpG signature was tested in additional BeadChip datasets of defined cell mixtures and the results were comparable to previously published signatures based on several thousand CpGs. Finally, we established and validated pyrosequencing assays for the relevant CpGs that can be utilized for classification and deconvolution of cell types. CONCLUSION: This proof of concept study demonstrates that DNAm analysis at individual CpGs reflects the cellular composition of cellular mixtures and different tissues. Targeted analysis of these genomic regions facilitates robust methods for application in basic research and clinical settings.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Humanos
12.
Leukemia ; 34(10): 2635-2647, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32684632

RESUMO

Despite the successes achieved with molecular targeted inhibition of the oncogenic driver Bcr-Abl in chronic myeloid leukemia (CML), the majority of patients still require lifelong tyrosine kinase inhibitor (TKI) therapy. This is primarily caused by resisting leukemic stem cells (LSCs), which prevent achievement of treatment-free remission in all patients. Here we describe the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing Fc gamma receptor IIb (FcγRIIb, CD32b) for being critical in LSC resistance and show that targeting FcγRIIb downstream signaling, by using a Food and Drug Administration-approved BTK inhibitor, provides a successful therapeutic approach. First, we identified FcγRIIb upregulation in primary CML stem cells. FcγRIIb depletion caused reduced serial re-plaiting efficiency and cell proliferation in malignant cells. FcγRIIb targeting in both a transgenic and retroviral CML mouse model provided in vivo evidence for successful LSC reduction. Subsequently, we identified BTK as a main downstream mediator and targeting the Bcr-Abl-FcγRIIb-BTK axis in primary CML CD34+ cells using ibrutinib, in combination with standard TKI therapy, significantly increased apoptosis in quiescent CML stem cells thereby contributing to the eradication of LSCs.. As a potential curative therapeutic approach, we therefore suggest combining Bcr-Abl TKI therapy along with BTK inhibition.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de IgG/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de IgG/genética
13.
Leukemia ; 34(4): 1062-1074, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31728053

RESUMO

Classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic malignancies including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation plays a central role in these disorders and can be found in 90% of PV and ~50-60% of ET and PMF. Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of the response to decreased oxygen levels. We demonstrate the impact of pharmacological inhibition and shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F-positive cells. Inhibition of HIF-1 binding to hypoxia response elements (HREs) with echinomycin, verified by ChIP, impaired growth and survival by inducing apoptosis and cell cycle arrest in Jak2V617F-positive 32D cells, but not Jak2WT controls. Echinomycin selectively abrogated clonogenic growth of JAK2V617F cells and decreased growth, survival, and colony formation of bone marrow and peripheral blood mononuclear cells and iPS cell-derived progenitor cells from JAK2V617F-positive patients, while cells from healthy donors were unaffected. We identified HIF-1 target genes involved in the Warburg effect as a possible underlying mechanism, with increased expression of Pdk1, Glut1, and others. That was underlined by transcriptome analysis of primary patient samples. Collectively, our data show that HIF-1 is a new potential therapeutic target in JAK2V617F-positive MPN.


Assuntos
Biomarcadores Tumorais/metabolismo , Equinomicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Prognóstico , Células Tumorais Cultivadas
14.
J Hematol Oncol ; 12(1): 36, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940163

RESUMO

BACKGROUND: Interferon alpha (IFNa) monotherapy is recommended as the standard therapy in polycythemia vera (PV) but not in chronic myeloid leukemia (CML). Here, we investigated the mechanisms of IFNa efficacy in JAK2V617F- vs. BCR-ABL-positive cells. METHODS: Gene expression microarrays and RT-qPCR of PV vs. CML patient PBMCs and CD34+ cells and of the murine cell line 32D expressing JAK2V617F or BCR-ABL were used to analyze and compare interferon-stimulated gene (ISG) expression. Furthermore, using CRISPR/Cas9n technology, targeted disruption of STAT1 or STAT2, respectively, was performed in 32D-BCR-ABL and 32D-JAK2V617F cells to evaluate the role of these transcription factors for IFNa efficacy. The knockout cell lines were reconstituted with STAT1, STAT2, STAT1Y701F, or STAT2Y689F to analyze the importance of wild-type and phosphomutant STATs for the IFNa response. ChIP-seq and ChIP were performed to correlate histone marks with ISG expression. RESULTS: Microarray analysis and RT-qPCR revealed significant upregulation of ISGs in 32D-JAK2V617F but downregulation in 32D-BCR-ABL cells, and these effects were reversed by tyrosine kinase inhibitor (TKI) treatment. Similar expression patterns were confirmed in human cell lines, primary PV and CML patient PBMCs and CD34+ cells, demonstrating that these effects are operational in patients. IFNa treatment increased Stat1, Stat2, and Irf9 mRNA as well as pY-STAT1 in all cell lines; however, viability was specifically decreased in 32D-JAK2V617F. STAT1 or STAT2 knockout and reconstitution with wild-type or phospho-deficient STAT mutants demonstrated the necessity of STAT2 for IFNa-induced STAT1 phosphorylation in BCR-ABL- but not in JAK2V617F-expressing cells. STAT1 was essential for IFNa activity in both BCR-ABL- and JAK2V617F-positive cells. Furthermore, ChIP experiments demonstrate higher repressive and lower active chromatin marks at the promoters of ISGs in BCR-ABL-expressing cells. CONCLUSIONS: JAK2V617F but not BCR-ABL sensitizes MPN cells to interferon, and this effect was dependent on STAT1. Moreover, STAT2 is a survival factor in BCR-ABL- and JAK2V617F-positive cells but an IFNa-sensitizing factor solely in 32D-JAK2V617F cells by upregulation of STAT1 expression.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Interferon-alfa/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos
15.
Leukemia ; 33(8): 1964-1977, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30842608

RESUMO

Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.


Assuntos
Janus Quinase 1/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/fisiologia , Humanos , Janus Quinase 1/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Camundongos
16.
Leukemia ; 33(4): 995-1010, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30470838

RESUMO

Pegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30-40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response. Retrospective analysis of MPN patients treated with peg-IFNa demonstrated that patients harboring the JAK2V617F mutation were more likely to achieve PMR than those with mutated CALR (p = 0.004), while there was no significant difference in hematological response. In vitro experiments confirmed an upregulation of IFN-stimulated genes in JAK2V617F-positive 32D cells as well as patient samples (peripheral blood mononuclear cells and CD34+ hematopoietic stem cells) compared to their CALR-mutated counterparts, and higher IFNa doses were needed to achieve the same IFNa response in CALR- as in JAK2V617F-mutant 32D cells. Additionally, Janus-activated kinase-1 (JAK1) and signal transducers and activators of transcription 1 (STAT1) showed constitutive phosphorylation in JAK2V617F-mutated but not CALR-mutated cells, indicating priming towards an IFNa response. Moreover, IFN-induced growth arrest was counteracted by selective JAK1 inhibition but enhanced by JAK2 inhibition. In conclusion, our data suggest that, clinically, higher doses of IFNa are needed in CALR-mutated vs. JAK2V617F-positive patients and we suggest a model of JAK2V617F-JAK1/STAT1 crosstalk leading to a priming of JAK2V617F-positive cells to IFNa resulting in differential sensitivity.


Assuntos
Calreticulina/genética , Interferon-alfa/farmacologia , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Fator de Transcrição STAT1/metabolismo , Adulto , Idoso , Animais , Antivirais/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Seguimentos , Humanos , Janus Quinase 1/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Prognóstico , Estudos Retrospectivos , Fator de Transcrição STAT1/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA