Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482358

RESUMO

In the intricate environment of a cell, many studies seek to discover the location of specific events or objects of interest. Advances in microscopy in recent years have allowed for high detail views of specific areas of cells of interest using correlative light electron microscopy (CLEM). While this powerful technique allows for the correlation of a specific area of fluorescence on a confocal microscope with that same area in an electron microscope, it is most often used to study tagged proteins of interest. This method adapts the correlative method for use with antibody labelling. We have shown that some cellular structures are more sensitive than others to this process and that this can be a useful technique for laboratories where tagged proteins or viruses, or dedicated CLEM instruments are not available.

2.
Viruses ; 14(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36016406

RESUMO

The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.


Assuntos
Infecções por Coronavirus , Gammacoronavirus , Vírus da Bronquite Infecciosa , Animais , Galinhas , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Mutação , Células Vero
3.
Front Immunol ; 13: 867707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418984

RESUMO

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.


Assuntos
COVID-19 , Coronavirus Respiratório Porcino , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , SARS-CoV-2 , Suínos
4.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960809

RESUMO

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Assuntos
Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , RNA Viral/biossíntese , Animais , Linhagem Celular , Coronavirus/classificação , Coronavirus/crescimento & desenvolvimento , Citoplasma/metabolismo , Humanos , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/metabolismo , RNA de Cadeia Dupla/metabolismo , Compartimentos de Replicação Viral/metabolismo
5.
J Virol ; 95(14): e0066321, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33963053

RESUMO

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Assuntos
COVID-19 , Genoma Viral , Motivos de Nucleotídeos , Dobramento de RNA , RNA Viral , SARS-CoV-2/fisiologia , Replicação Viral , Animais , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Células Vero
6.
PLoS Biol ; 18(12): e3001016, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347434

RESUMO

SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Ligação Viral , Substituição de Aminoácidos , Animais , Sítios de Ligação , Gatos , Bovinos , Cães , Cobaias , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Coelhos , Ratos , Zoonoses Virais/virologia
7.
Methods Mol Biol ; 2203: 135-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833210

RESUMO

Several techniques are currently available to quickly and accurately quantify the number of virus particles in a sample, taking advantage of advanced technologies improving old techniques or generating new ones, generally relying on partial detection methods or structural analysis. Therefore, characterization of virus infectivity in a sample is often essential, and classical virological methods are extremely powerful in providing accurate results even in an old-fashioned way. In this chapter, we describe in detail the techniques routinely used to estimate the number of viable infectious coronavirus particles in a given sample. All these techniques are serial dilution assays, also known as titrations or end-point dilution assays (EPDA).


Assuntos
Coronavirus/patogenicidade , Ensaio de Placa Viral/métodos , Animais , Células Cultivadas , Coronavirus/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/patogenicidade , Traqueia/citologia
8.
Methods Mol Biol ; 2203: 231-238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833216

RESUMO

Ribopuromycylation enables the visualization and quantitation of translation on a cellular level by immunofluorescence or in total using standard western blotting. This technique uses ribosome catalyzed puromycylation of nascent chains followed by immobilization on the ribosome by antibiotic chain elongation inhibitor emetine. Detection of puromycylated ribosome-bound nascent chains can then be achieved using a puromycin-specific antibody.


Assuntos
Coronavirus/genética , Puromicina/farmacologia , Infecções por Coronavirus , Imunofluorescência , Interações Hospedeiro-Patógeno , Humanos , Biossíntese de Proteínas , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
9.
Viruses ; 12(7)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674326

RESUMO

The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious economically important respiratory pathogen of domestic fowl. Reverse genetics allows for the molecular study of pathogenic determinants to enable rational vaccine design. The recombinant IBV (rIBV) Beau-R, a molecular clone of the apathogenic Beaudette strain, has previously been investigated as a vaccine platform. To determine tissues in which Beau-R could effectively deliver antigenic genes, an in vivo study in chickens, the natural host, was used to compare the pattern of viral dissemination of Beau-R to the pathogenic strain M41-CK. Replication of Beau-R was found to be restricted to soft tissue within the beak, whereas M41-CK was detected in beak tissue, trachea and eyelid up to seven days post infection. In vitro assays further identified that, unlike M41-CK, Beau-R could not replicate at 41 °C, the core body temperature of a chicken, but is able to replicate a 37 °C, a temperature relatable to the very upper respiratory tract. Using a panel of rIBVs with defined mutations in the structural and accessory genes, viral replication at permissive and non-permissive temperatures was investigated, identifying that the Beau-R replicase gene was a determinant of temperature sensitivity and that sub-genomic mRNA synthesis had been affected. The identification of temperature sensitive allelic lesions within the Beau-R replicase gene opens up the possibility of using this method of attenuation in other IBV strains for future vaccine development as well as a method to investigate the functions of the IBV replicase proteins.


Assuntos
Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Temperatura , Vacinas Atenuadas/imunologia , Replicação Viral/genética , Replicação Viral/fisiologia
10.
PLoS Biol ; 18(6): e3000715, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511245

RESUMO

Zoonotic coronavirus (CoV) infections, such as those responsible for the current severe acute respiratory syndrome-CoV 2 (SARS-CoV-2) pandemic, cause grave international public health concern. In infected cells, the CoV RNA-synthesizing machinery associates with modified endoplasmic reticulum membranes that are transformed into the viral replication organelle (RO). Although double-membrane vesicles (DMVs) appear to be a pan-CoV RO element, studies to date describe an assortment of additional CoV-induced membrane structures. Despite much speculation, it remains unclear which RO element(s) accommodate viral RNA synthesis. Here we provide detailed 2D and 3D analyses of CoV ROs and show that diverse CoVs essentially induce the same membrane modifications, including the small open double-membrane spherules (DMSs) previously thought to be restricted to gamma- and delta-CoV infections and proposed as sites of replication. Metabolic labeling of newly synthesized viral RNA followed by quantitative electron microscopy (EM) autoradiography revealed abundant viral RNA synthesis associated with DMVs in cells infected with the beta-CoVs Middle East respiratory syndrome-CoV (MERS-CoV) and SARS-CoV and the gamma-CoV infectious bronchitis virus. RNA synthesis could not be linked to DMSs or any other cellular or virus-induced structure. Our results provide a unifying model of the CoV RO and clearly establish DMVs as the central hub for viral RNA synthesis and a potential drug target in CoV infection.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavirus/classificação , Coronavirus/fisiologia , Retículo Endoplasmático/patologia , Retículo Endoplasmático/virologia , Replicação Viral , Animais , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero
11.
Viruses ; 12(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422883

RESUMO

Viruses must hijack cellular translation machinery to express viral genes. In many cases, this is impeded by cellular stress responses. These stress responses result in the global inhibition of translation and the storage of stalled mRNAs, into RNA-protein aggregates called stress granules. This results in the translational silencing of the majority of mRNAs excluding those beneficial for the cell to resolve the specific stress. For example, the expression of antiviral factors is maintained during viral infection. Here we investigated stress granule regulation by Gammacoronavirus infectious bronchitis virus (IBV), which causes the economically important poultry disease, infectious bronchitis. Interestingly, we found that IBV is able to inhibit multiple cellular stress granule signaling pathways, whilst at the same time, IBV replication also results in the induction of seemingly canonical stress granules in a proportion of infected cells. Moreover, IBV infection uncouples translational repression and stress granule formation and both processes are independent of eIF2α phosphorylation. These results provide novel insights into how IBV modulates cellular translation and antiviral stress signaling.


Assuntos
Infecções por Coronavirus/veterinária , Grânulos Citoplasmáticos/virologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/fisiopatologia , Biossíntese de Proteínas , Células Vero , Replicação Viral
12.
Viruses ; 11(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694296

RESUMO

Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus-host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.


Assuntos
Coronavirus , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/ultraestrutura , Organelas/ultraestrutura , Replicação Viral , Animais , Linhagem Celular , Coronavirus/fisiologia , Coronavirus/ultraestrutura , Infecções por Coronavirus/virologia , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Membranas Intracelulares/virologia , Cinética , Organelas/virologia , RNA Viral/biossíntese , Suínos
13.
Viruses ; 10(9)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200673

RESUMO

Positive-strand RNA viruses, such as coronaviruses, induce cellular membrane rearrangements during replication to form replication organelles allowing for efficient viral RNA synthesis. Infectious bronchitis virus (IBV), a pathogenic avian Gammacoronavirus of significant importance to the global poultry industry, has been shown to induce the formation of double membrane vesicles (DMVs), zippered endoplasmic reticulum (zER) and tethered vesicles, known as spherules. These membrane rearrangements are virally induced; however, it remains unclear which viral proteins are responsible. In this study, membrane rearrangements induced when expressing viral non-structural proteins (nsps) from two different strains of IBV were compared. Three non-structural transmembrane proteins, nsp3, nsp4, and nsp6, were expressed in cells singularly or in combination and the effects on cellular membranes investigated using electron microscopy and electron tomography. In contrast to previously studied coronaviruses, IBV nsp4 alone is necessary and sufficient to induce membrane pairing; however, expression of the transmembrane proteins together was not sufficient to fully recapitulate DMVs. This indicates that although nsp4 is able to singularly induce membrane pairing, further viral or host factors are required in order to fully assemble IBV replicative structures. This study highlights further differences in the mechanism of membrane rearrangements between members of the coronavirus family.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/virologia , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Membrana Celular/ultraestrutura , Galinhas , Fibroblastos/virologia , Microscopia Eletrônica
14.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021894

RESUMO

The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa/fisiologia , Subunidades Proteicas , Glicoproteína da Espícula de Coronavírus , Tropismo Viral/fisiologia , Replicação Viral/fisiologia , Animais , Galinhas , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
15.
Front Physiol ; 9: 541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867578

RESUMO

Autophagy, a highly conserved intracellular self-digestion process, plays an integral role in maintaining cellular homeostasis. Although emerging evidence indicate that the endocrine system regulates autophagy in mammals, there is still a scarcity of information on autophagy in avian (non-mammalian) species. Here, we show that intracerebroventricular administration of leptin reduces feed intake, modulates the expression of feeding-related hypothalamic neuropeptides, activates leptin receptor and signal transducer and activator of transcription (Ob-Rb/STAT) pathway, and significantly increases the expression of autophagy-related proteins (Atg3, Atg5, Atg7, beclin1, and LC3B) in chicken hypothalamus, liver, and muscle. Similarly, leptin treatment activates Ob-Rb/STAT pathway and increased the expression of autophagy-related markers in chicken hypothalamic organotypic cultures, muscle (QM7) and hepatocyte (Sim-CEL) cell cultures as well as in Chinese Hamster Ovary (CHO-K1) cells-overexpressing chicken Ob-Rb and STAT3. To define the downstream mediator(s) of leptin's effects on autophagy, we determined the role of the master energy sensor AMP-activated protein kinase (AMPK). Leptin treatment significantly increased the phosphorylated levels of AMPKα1/2 at Thr172 site in chicken hypothalamus and liver, but not in muscle. Likewise, AMPKα1/2 was activated by leptin in chicken hypothalamic organotypic culture and Sim-CEL, but not in QM7 cells. Blocking AMPK activity by compound C reverses the autophagy-inducing effect of leptin. Together, these findings indicate that AMPK mediates the effect of leptin on chicken autophagy in a tissue-specific manner.

16.
Avian Pathol ; 46(2): 173-180, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27624876

RESUMO

Infectious bronchitis virus (IBV) causes infectious bronchitis in poultry, a respiratory disease that is a source of major economic loss to the poultry industry. Detection and the study of the molecular pathogenesis of the virus often involve the use of real-time quantitative PCR assays (qPCR). To account for error within the experiments, the levels of target gene transcription are normalized to that of suitable reference genes. Despite publication of the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines in 2009, single un-tested reference genes are often used for normalization of qPCR assays in avian research studies. Here, we use the geNorm algorithm to identify suitable reference genes in different avian cell types during infection with apathogenic and pathogenic strains of IBV. We discuss the importance of selecting an appropriate experimental sample subset for geNorm analysis, and show the effect that this selection can have on resultant reference gene selection. The effects of inappropriate normalization on the transcription pattern of a cellular signalling gene, AKT1, and the interferon-inducible, MX1, were studied. We identify the possibility of the misinterpretation of qPCR data when an inappropriate normalization strategy is employed. This is most notable when measuring the transcription of AKT1, where changes are minimal during infection.


Assuntos
Galinhas/virologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/isolamento & purificação , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/genética , Rim/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Organismos Livres de Patógenos Específicos
17.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974565

RESUMO

Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3+ autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions.IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.


Assuntos
Autofagia , Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/virologia , Vacúolos/virologia , Animais , Infecções por Birnaviridae/virologia , Linhagem Celular , Embrião de Galinha , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Transdução de Sinais , Vacúolos/fisiologia , Internalização do Vírus , Liberação de Vírus , Replicação Viral
18.
PLoS One ; 11(8): e0160173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537060

RESUMO

Quantitative real-time PCR assays are widely used for the quantification of mRNA within avian experimental samples. Multiple stably-expressed reference genes, selected for the lowest variation in representative samples, can be used to control random technical variation. Reference gene assays must be reliable, have high amplification specificity and efficiency, and not produce signals from contaminating DNA. Whilst recent research papers identify specific genes that are stable in particular tissues and experimental treatments, here we describe a panel of ten avian gene primer and probe sets that can be used to identify suitable reference genes in many experimental contexts. The panel was tested with TaqMan and SYBR Green systems in two experimental scenarios: a tissue collection and virus infection of cultured fibroblasts. GeNorm and NormFinder algorithms were able to select appropriate reference gene sets in each case. We show the effects of using the selected genes on the detection of statistically significant differences in expression. The results are compared with those obtained using 28s ribosomal RNA, the present most widely accepted reference gene in chicken work, identifying circumstances where its use might provide misleading results. Methods for eliminating DNA contamination of RNA reduced, but did not completely remove, detectable DNA. We therefore attached special importance to testing each qPCR assay for absence of signal using DNA template. The assays and analyses developed here provide a useful resource for selecting reference genes for investigations of avian biology.


Assuntos
Galinhas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Algoritmos , Animais , Embrião de Galinha/metabolismo , Embrião de Galinha/virologia , Perfilação da Expressão Gênica/métodos , Genes/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Influenza Aviária/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência
19.
Sci Rep ; 6: 27126, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27255716

RESUMO

Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts.


Assuntos
Membrana Celular/virologia , Galinhas/virologia , Retículo Endoplasmático/virologia , Gammacoronavirus/patogenicidade , Animais , Células Cultivadas , Retículo Endoplasmático/química , Gammacoronavirus/classificação , Gammacoronavirus/fisiologia , Técnicas de Cultura de Órgãos , Fenótipo , Traqueia/virologia , Virulência , Replicação Viral
20.
J Virol ; 90(16): 7519-7528, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279618

RESUMO

UNLABELLED: During infection of their host cells, viruses often inhibit the production of host proteins, a process that is referred to as host shutoff. By doing this, viruses limit the production of antiviral proteins and increase production capacity for viral proteins. Coronaviruses from the genera Alphacoronavirus and Betacoronavirus, such as severe acute respiratory syndrome coronavirus (SARS-CoV), establish host shutoff via their nonstructural protein 1 (nsp1). The Gammacoronavirus and Deltacoronavirus genomes, however, do not encode nsp1, and it has been suggested that these viruses do not induce host shutoff. Here, we show that the Gammacoronavirus infectious bronchitis virus (IBV) does induce host shutoff, and we find that its accessory protein 5b is indispensable for this function. Importantly, we found that 5b-null viruses, unlike wild-type viruses, induce production of high concentrations of type I interferon protein in vitro, indicating that host shutoff by IBV plays an important role in antagonizing the host's innate immune response. Altogether, we demonstrate that 5b is a functional equivalent of nsp1, thereby answering the longstanding question of whether lack of nsp1 in gammacoronaviruses is compensated for by another viral protein. As such, our study is a significant step forward in the understanding of coronavirus biology and closes a gap in the understanding of some IBV virulence strategies. IMPORTANCE: Many viruses inhibit protein synthesis by their host cell to enhance virus replication and to antagonize antiviral defense mechanisms. This process is referred to as host shutoff. We studied gene expression and protein synthesis in chicken cells infected with the important poultry pathogen infectious bronchitis virus (IBV). We show that IBV inhibits synthesis of host proteins, including that of type I interferon, a key component of the antiviral response. The IBV-induced host shutoff, however, does not require degradation of host RNA. Furthermore, we demonstrate that accessory protein 5b of IBV plays a crucial role in the onset of host shutoff. Our findings suggest that inhibition of host protein synthesis is a common feature of coronaviruses and primarily serves to inhibit the antiviral response of the host.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Interferon Tipo I/antagonistas & inibidores , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Galinhas , Técnicas de Inativação de Genes , Vírus da Bronquite Infecciosa/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA