Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microlife ; 4: uqad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223747

RESUMO

In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.

2.
Front Mol Biosci ; 8: 640440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055875

RESUMO

The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR-cas genes, but the mature s479 contains a crRNA-like 5' handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR-Cas system is involved in s479 function.

3.
RNA Biol ; 17(5): 663-676, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32041469

RESUMO

Archaeal genomes are densely packed; thus, correct transcription termination is an important factor for orchestrated gene expression. A systematic analysis of RNA 3´ termini, to identify transcription termination sites (TTS) using RNAseq data has hitherto only been performed in two archaea, Methanosarcina mazei and Sulfolobus acidocaldarius. In this study, only regions directly downstream of annotated genes were analysed, and thus, only part of the genome had been investigated. Here, we developed a novel algorithm (Internal Enrichment-Peak Calling) that allows an unbiased, genome-wide identification of RNA 3´ termini independent of annotation. In an RNA fraction enriched for primary transcripts by terminator exonuclease (TEX) treatment we identified 1,543 RNA 3´ termini. Approximately half of these were located in intergenic regions, and the remainder were found in coding regions. A strong sequence signature consistent with known termination events at intergenic loci indicates a clear enrichment for native TTS among them. Using these data we determined distinct putative termination motifs for intergenic (a T stretch) and coding regions (AGATC). In vivo reporter gene tests of selected TTS confirmed termination at these sites, which exemplify the different motifs. For several genes, more than one termination site was detected, resulting in transcripts with different lengths of the 3´ untranslated region (3´ UTR).


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , RNA Arqueal/genética , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Genoma Arqueal , Genômica/métodos , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Fases de Leitura Aberta , Óperon , Terminação da Transcrição Genética
5.
Biochem Soc Trans ; 47(1): 461-468, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30783016

RESUMO

One of the most fundamental biological processes driving all life on earth is transcription. The, at first glance, relatively simple cycle is divided into three stages: initiation at the promoter site, elongation throughout the open reading frame, and finally termination and product release at the terminator. In all three processes, motifs of the template DNA and protein factors of the transcription machinery including the multisubunit polymerase itself as well as a broad range of associated transcription factors work together and mutually influence each other. Despite several decades of research, this interplay holds delicate mechanistic and structural details as well as interconnections yet to be explored. One of the surprising characteristics of archaeal biology is the use of eukaryotic-like information processing systems against a backdrop of a bacterial-like genome. Archaeal genomes usually comprise main chromosomes alongside chromosomal plasmids, and the genetic information is encoded in single transcriptional units as well as in multicistronic operons alike their bacterial counterparts. Moreover, archaeal genomes are densely packed and this necessitates a tight regulation of transcription and especially assured termination events in order to prevent read-through into downstream coding regions and the accumulation of antisense transcripts.


Assuntos
Archaea/genética , Terminação da Transcrição Genética , Genoma Arqueal , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Terminadoras Genéticas
6.
RNA Biol ; 16(4): 469-480, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649958

RESUMO

Invading genetic elements pose a constant threat to prokaryotic survival, requiring an effective defence. Eleven years ago, the arsenal of known defence mechanisms was expanded by the discovery of the CRISPR-Cas system. Although CRISPR-Cas is present in the majority of archaea, research often focuses on bacterial models. Here, we provide a perspective based on insights gained studying CRISPR-Cas system I-B of the archaeon Haloferax volcanii. The system relies on more than 50 different crRNAs, whose stability and maintenance critically depend on the proteins Cas5 and Cas7, which bind the crRNA and form the Cascade complex. The interference machinery requires a seed sequence and can interact with multiple PAM sequences. H. volcanii stands out as the first example of an organism that can tolerate autoimmunity via the CRISPR-Cas system while maintaining a constitutively active system. In addition, the H. volcanii system was successfully developed into a tool for gene regulation.


Assuntos
Sistemas CRISPR-Cas/genética , Haloferax/genética , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , RNA Arqueal/genética , Transcrição Gênica
7.
FEMS Microbiol Rev ; 42(5): 579-613, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684129

RESUMO

RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.


Assuntos
Archaea/enzimologia , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Archaea/metabolismo
8.
Biochimie ; 117: 129-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25754521

RESUMO

Members of the Sm protein family are important for the cellular RNA metabolism in all three domains of life. The family includes archaeal and eukaryotic Lsm proteins, eukaryotic Sm proteins and archaeal and bacterial Hfq proteins. While several studies concerning the bacterial and eukaryotic family members have been published, little is known about the archaeal Lsm proteins. Although structures for several archaeal Lsm proteins have been solved already more than ten years ago, we still do not know much about their biological function, however one can confidently propose that the archaeal Lsm proteins will also be involved in RNA metabolism. Therefore, we investigated this protein in the halophilic archaeon Haloferax volcanii. The Haloferax genome encodes a single Lsm protein, the lsm gene overlaps and is co-transcribed with the gene for the ribosomal L37.eR protein. Here, we show that the reading frame of the lsm gene contains a promoter which regulates expression of the overlapping rpl37R gene. This rpl37R specific promoter ensures high expression of the rpl37R gene in exponential growth phase. To investigate the biological function of the Lsm protein we generated a lsm deletion mutant that had the coding sequence for the Sm1 motif removed but still contained the internal promoter for the downstream rpl37R gene. The transcriptome of this deletion mutant was compared to the wild type transcriptome, revealing that several genes are down-regulated and many genes are up-regulated in the deletion strain. Northern blot analyses confirmed down-regulation of two genes. In addition, the deletion strain showed a gain of function in swarming, in congruence with the up-regulation of transcripts encoding proteins required for motility.


Assuntos
Proteínas Arqueais/genética , Deleção de Genes , Haloferax volcanii/genética , Motivos de Nucleotídeos/genética , Transcriptoma/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Northern Blotting , Regulação para Baixo , Regulação da Expressão Gênica em Archaea , Genoma Arqueal/genética , Haloferax volcanii/metabolismo , Haloferax volcanii/fisiologia , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , RNA Arqueal/genética , RNA Arqueal/metabolismo , Proteínas Ribossômicas/genética , Regulação para Cima
9.
Life (Basel) ; 5(1): 521-37, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25692903

RESUMO

To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable-the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated). Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I-III) and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA) maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM) sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

10.
J Biol Chem ; 290(7): 4192-201, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25512373

RESUMO

The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3' handle are still active in triggering an interference reaction. The complete 3' handle could be removed without loss of activity. However, manipulations of the 5' handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.


Assuntos
Proteínas Arqueais/imunologia , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/imunologia , Plasmídeos/genética , RNA Arqueal/imunologia , Proteínas Arqueais/genética , Northern Blotting , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Interferência de RNA , RNA Arqueal/genética
11.
RNA Biol ; 11(8): 1072-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483036

RESUMO

Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.


Assuntos
Proteínas Arqueais/química , Proteínas Associadas a CRISPR/química , Proteínas de Ligação a RNA/química , Thermofilaceae/química , Archaea , Proteínas Arqueais/genética , Sítios de Ligação , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Cristalografia por Raios X , Interações Hospedeiro-Patógeno/genética , Conformação Proteica , RNA Arqueal/química , RNA Arqueal/genética , Proteínas de Ligação a RNA/genética
12.
RNA Biol ; 11(5): 484-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755959

RESUMO

Small regulatory RNAs (sRNAs) are universally distributed in all three domains of life, Archaea, Bacteria, and Eukaryotes. In bacteria, sRNAs typically function by binding near the translation start site of their target mRNAs and thereby inhibit or activate translation. In eukaryotes, miRNAs and siRNAs typically bind to the 3'-untranslated region (3'-UTR) of their target mRNAs and influence translation efficiency and/or mRNA stability. In archaea, sRNAs have been identified in all species investigated using bioinformatic approaches, RNomics, and RNA-Seq. Their size can vary significantly between less than 50 to more than 500 nucleotides. Differential expression of sRNA genes has been studied using northern blot analysis, microarrays, and RNA-Seq. In addition, biological functions have been unraveled by genetic approaches, i.e., by characterization of designed mutants. As in bacteria, it was revealed that archaeal sRNAs are involved in many biological processes, including metabolic regulation, adaptation to extreme conditions, stress responses, and even in regulation of morphology and cellular behavior. Recently, the first target mRNAs were identified in archaea, including one sRNA that binds to the 5'-region of two mRNAs in Methanosarcina mazei Gö1 and a few sRNAs that bind to 3'-UTRs in Sulfolobus solfataricus, three Pyrobaculum species, and Haloferax volcanii, indicating that archaeal sRNAs appear to be able to target both the 5'-UTR or the 3'-UTRs of their respective target mRNAs. In addition, archaea contain tRNA-derived fragments (tRFs), and one tRF has been identified as a major ribosome-binding sRNA in H. volcanii, which downregulates translation in response to stress. Besides regulatory sRNAs, archaea contain further classes of sRNAs, e.g., CRISPR RNAs (crRNAs) and snoRNAs.


Assuntos
Archaea/genética , RNA Antissenso/genética , RNA Arqueal/genética , Pequeno RNA não Traduzido/genética , Archaea/metabolismo , Pareamento de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea , Genômica , RNA Antissenso/metabolismo , RNA Arqueal/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
13.
J Biol Chem ; 289(10): 7164-7177, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24459147

RESUMO

The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1-8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.


Assuntos
Proteínas Arqueais/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Estabilidade de RNA , RNA Arqueal/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Dados de Sequência Molecular
14.
Biochem Soc Trans ; 41(6): 1444-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256235

RESUMO

Uptake of foreign mobile genetic elements is often detrimental and can result in cell death. For protection against invasion, prokaryotes have developed several defence mechanisms, which take effect at all stages of infection; an example is the recently discovered CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immune system. This defence system directly degrades invading genetic material and is present in almost all archaea and many bacteria. Current data indicate a large variety of mechanistic molecular approaches. Although almost all archaea carry this defence weapon, only a few archaeal systems have been fully characterized. In the present paper, we summarize the prerequisites for the detection and degradation of invaders in the halophilic archaeon Haloferax volcanii. H. volcanii encodes a subtype I-B CRISPR-Cas system and the defence can be triggered by a plasmid-based invader. Six different target-interference motifs are recognized by the Haloferax defence and a 9-nt non-contiguous seed sequence is essential. The repeat sequence has the potential to fold into a minimal stem-loop structure, which is conserved in haloarchaea and might be recognized by the Cas6 endoribonuclease during the processing of CRISPR loci into mature crRNA (CRISPR RNA). Individual crRNA species were present in very different concentrations according to an RNA-Seq analysis and many were unable to trigger a successful defence reaction. Recognition of the plasmid invader does not depend on its copy number, but instead results indicate a dependency on the type of origin present on the plasmid.


Assuntos
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Haloferax volcanii/genética , Haloferax volcanii/imunologia , RNA Arqueal/genética , RNA Arqueal/metabolismo
15.
RNA Biol ; 10(5): 865-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594992

RESUMO

To fend off foreign genetic elements, prokaryotes have developed several defense systems. The most recently discovered defense system, CRISPR/Cas, is sequence-specific, adaptive and heritable. The two central components of this system are the Cas proteins and the CRISPR RNA. The latter consists of repeat sequences that are interspersed with spacer sequences. The CRISPR locus is transcribed into a precursor RNA that is subsequently processed into short crRNAs. CRISPR/Cas systems have been identified in bacteria and archaea, and data show that many variations of this system exist. We analyzed the requirements for a successful defense reaction in the halophilic archaeon Haloferax volcanii. Haloferax encodes a CRISPR/Cas system of the I-B subtype, about which very little is known. Analysis of the mature crRNAs revealed that they contain a spacer as their central element, which is preceded by an eight-nucleotide-long 5' handle that originates from the upstream repeat. The repeat sequences have the potential to fold into a minimal stem loop. Sequencing of the crRNA population indicated that not all of the spacers that are encoded by the three CRISPR loci are present in the same abundance. By challenging Haloferax with an invader plasmid, we demonstrated that the interaction of the crRNA with the invader DNA requires a 10-nucleotide-long seed sequence. In addition, we found that not all of the crRNAs from the three CRISPR loci are effective at triggering the degradation of invader plasmids. The interference does not seem to be influenced by the copy number of the invader plasmid.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Haloferax volcanii/genética , Plasmídeos , RNA Arqueal/química , RNA Arqueal/genética , Sequência de Bases , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , DNA/genética , Haloferax volcanii/imunologia , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Mutagênese , Filogenia , Processamento Pós-Transcricional do RNA , RNA Arqueal/imunologia , Alinhamento de Sequência , Análise de Sequência de RNA
16.
Biochem Soc Trans ; 41(1): 374-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356314

RESUMO

To survive the constant invasions by foreign genetic elements, prokaryotes have evolved various defensive systems. Almost all sequenced archaea, and half of the analysed bacteria use the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system, a recently identified prokaryotic immune system that can fend off invading elements in a sequence-specific manner. Few archaeal CRISPR/Cas systems have been analysed so far, and the molecular details of many of the steps involved in adaptation and defence are yet to be understood. In the present paper, we summarize our current knowledge about the CRISPR/Cas system in Haloferax volcanii, an extremely halophilic archaeon that was isolated from the Dead Sea. H. volcanii encodes a type I-B CRISPR/Cas system, and carries three CRISPR loci and eight Cas proteins. Although in laboratory culture for more than three decades, this defence system was shown to be still active. All three CRISPR loci are transcribed and processed into mature crRNAs (CRISPR RNAs). Cells challenged with engineered plasmids can recognize and eliminate these invading elements if they contain the correct PAM (protospacer adjacent motif) and a sequence that can be recognized by one of the CRISPR spacers.


Assuntos
Haloferax/genética , RNA Arqueal/genética , Sequência de Bases
17.
Extremophiles ; 16(5): 685-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22763819

RESUMO

Non-coding RNAs are key players in many cellular processes within organisms from all three domains of life. The range and diversity of small RNA functions beyond their involvement in translation and RNA processing was first recognized for eukaryotes and bacteria. Since then, small RNAs were also found to be abundant in archaea. Their functions include the regulation of gene expression and the establishment of immunity against invading mobile genetic elements. This review summarizes our current knowledge about small RNAs used for regulation and defence in archaea.


Assuntos
Archaea , Regulação da Expressão Gênica em Archaea/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Arqueal , Pequeno RNA não Traduzido , Archaea/genética , Archaea/metabolismo , Sequências Repetitivas Dispersas
18.
J Biol Chem ; 287(40): 33351-63, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22767603

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.


Assuntos
DNA/química , Haloferax/imunologia , Haloferax/metabolismo , Sulfolobus/imunologia , Sulfolobus/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Archaea/metabolismo , Sequência de Bases , Biologia Computacional/métodos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Ácidos Nucleicos/química , Plasmídeos/metabolismo , Pyrococcus/metabolismo , RNA/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
19.
Mob Genet Elements ; 2(5): 228-232, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23446883

RESUMO

Prokaryotes have developed several strategies to defend themselves against foreign genetic elements. One of those defense mechanisms is the recently identified CRISPR/Cas system, which is used by approximately half of all bacterial and almost all archaeal organisms. The CRISPR/Cas system differs from the other defense strategies because it is adaptive, hereditary and it recognizes the invader by a sequence specific mechanism. To identify the invading foreign nucleic acid, a crRNA that matches the invader DNA is required, as well as a short sequence motif called protospacer adjacent motif (PAM). We recently identified the PAM sequences for the halophilic archaeon Haloferax volcanii, and found that several motifs were active in triggering the defense reaction. In contrast, selection of protospacers from the invader seems to be based on fewer PAM sequences, as evidenced by comparative sequence data. This suggests that the selection of protospacers has stricter requirements than the defense reaction. Comparison of CRISPR-repeat sequences carried by sequenced haloarchaea revealed that in more than half of the species, the repeat sequence is conserved and that they have the same CRISPR/Cas type.

20.
Biochem Soc Trans ; 39(1): 159-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265765

RESUMO

In organisms of all three domains of life, a plethora of sRNAs (small regulatory RNAs) exists in addition to the well-known RNAs such as rRNAs, tRNAs and mRNAs. Although sRNAs have been well studied in eukaryotes and in bacteria, the sRNA population in archaea has just recently been identified and only in a few archaeal species. In the present paper, we summarize our current knowledge about sRNAs and their function in the halophilic archaeon Haloferax volcanii. Using two different experimental approaches, 111 intergenic and 38 antisense sRNAs were identified, as well as 42 tRFs (tRNA-derived fragments). Observation of differential expression under various conditions suggests that these sRNAs might be active as regulators in gene expression like their bacterial and eukaryotic counterparts. The severe phenotypes observed upon deletion and overexpression of sRNA genes revealed that sRNAs are involved in, and important for, a variety of biological functions in H. volcanii and possibly other archaea. Investigation of the Haloferax Lsm protein suggests that this protein is involved in the archaeal sRNA pathway.


Assuntos
Haloferax volcanii/genética , RNA Arqueal/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Eucariotos/genética , Regulação da Expressão Gênica em Archaea , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA