Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Sci Adv ; 10(32): eadp1890, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110806

RESUMO

Surface charges play a fundamental role in physics and chemistry, in particular in shaping the catalytic properties of nanomaterials. However, tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate time-resolved access to the nanoscale charge dynamics on dielectric nanoparticles using reaction nanoscopy. We present a four-dimensional visualization of the spatiotemporal evolution of the charge density on individual SiO2 nanoparticles under strong-field irradiation with femtosecond-nanometer resolution. The initially localized surface charges exhibit a biexponential redistribution over time. Our findings reveal the influence of surface charges on surface molecular bonding through quantum dynamical simulations. We performed semi-classical simulations to uncover the roles of diffusion and charge loss in the surface charge redistribution process. Understanding nanoscale surface charge dynamics and its influence on chemical bonding on a single-nanoparticle level unlocks an increased ability to address global needs in renewable energy and advanced health care.

2.
Adv Mater ; : e2405978, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092689

RESUMO

Photonic metasurfaces offer exceptional control over light at the nanoscale, facilitating applications spanning from biosensing, and nonlinear optics to photocatalysis. Many metasurfaces, especially resonant ones, rely on periodicity for the collective mode to form, which makes them subject to the influences of finite size effects, defects, and edge effects, which have considerable negative impact at the application level. These aspects are especially important for quasi-bound state in the continuum (BIC) metasurfaces, for which the collective mode is highly sensitive to perturbations due to high-quality factors and strong near-field enhancement. Here, the mode formation in quasi-BIC metasurfaces on the individual resonator level using scattering scanning near-field optical microscopy (s-SNOM) in combination with a new image processing technique, is quantitatively investigated. It is found that the quasi-BIC mode is formed at a minimum size of 10 × 10-unit cells much smaller than expected from far-field measurements. Furthermore, it is shown that the coupling direction of the resonators, defects and edge states have pronounced influence on the quasi-BIC mode. This study serves as a link between the far-field and near-field responses of metasurfaces, offering crucial insights for optimizing spatial footprint and active area, holding promise for augmenting applications such as catalysis and biospectroscopy.

3.
Nano Lett ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191398

RESUMO

Active functionalities of metasurfaces are of growing interest in nanophotonics. The main strategy employed to date is spectral resonance tuning affecting predominantly the far-field response. However, this barely influences other essential resonance properties like near-field enhancement, signal modulation, quality factor, and absorbance, which are all vital for numerous applications. Here we introduce an active metasurface approach that combines temperature-tunable losses in vanadium dioxide with far-field coupling tunable symmetry-protected bound states in the continuum. This method enables exceptional precision in independently controlling both radiative and nonradiative losses. Consequently, it allows for the adjustment of both the far-field response and, notably, the near-field characteristics like local field enhancement and absorbance. We experimentally demonstrate continuous tuning from under- through critical- to overcoupling, achieving quality factors of 200 and a relative switching contrast of 78%. Our research marks a significant step toward highly tunable metasurfaces, controlling both near- and far-field properties.

4.
Nat Nanotechnol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187580

RESUMO

To control and enhance light-matter interactions at the nanoscale, two parameters are central: the spectral overlap between an optical cavity mode and the material's spectral features (for example, excitonic or molecular absorption lines), and the quality factor of the cavity. Controlling both parameters simultaneously would enable the investigation of systems with complex spectral features, such as multicomponent molecular mixtures or heterogeneous solid-state materials. So far, it has been possible only to sample a limited set of data points within this two-dimensional parameter space. Here we introduce a nanophotonic approach that can simultaneously and continuously encode the spectral and quality-factor parameter space within a compact spatial area. We use a dual-gradient metasurface design composed of a two-dimensional array of smoothly varying subwavelength nanoresonators, each supporting a unique mode based on symmetry-protected bound states in the continuum. This results in 27,500 distinct modes and a mode density approaching the theoretical upper limit for metasurfaces. By applying our platform to surface-enhanced molecular spectroscopy, we find that the optimal quality factor for maximum sensitivity depends on the amount of analyte, enabling effective molecular detection regardless of analyte concentration within a single dual-gradient metasurface. Our design provides a method to analyse the complete spectral and coupling-strength parameter space of complex material systems for applications such as photocatalysis, chemical sensing and entangled photon generation.

5.
Nat Commun ; 15(1): 7050, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147735

RESUMO

Achieving precise spectral and temporal light manipulation at the nanoscale remains a critical challenge in nanophotonics. While photonic bound states in the continuum (BICs) have emerged as a powerful means of controlling light, their reliance on geometrical symmetry breaking for obtaining tailored resonances makes them highly susceptible to fabrication imperfections, and their generally fixed asymmetry factor fundamentally limits applications in reconfigurable metasurfaces. Here, we introduce the concept of environmental symmetry breaking by embedding identical resonators into a surrounding medium with carefully placed regions of contrasting refractive indexes, activating permittivity-driven quasi-BIC resonances (ε-qBICs) without altering the underlying resonator geometry and unlocking an additional degree of freedom for light manipulation through active tuning of the surrounding dielectric environment. We demonstrate this concept by integrating polyaniline (PANI), an electro-optically active polymer, to achieve electrically reconfigurable ε-qBICs. This integration not only demonstrates rapid switching speeds and exceptional durability but also boosts the system's optical response to environmental perturbations. Our strategy significantly expands the capabilities of resonant light manipulation through permittivity modulation, opening avenues for on-chip optical devices, advanced sensing, and beyond.

6.
Nano Lett ; 24(21): 6362-6368, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752764

RESUMO

Plasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%. Via spatially decoupled pump-probe experiments, we were able to map the radiated acoustic energy in the proximity of the focal area, obtaining a very good agreement with the continuum elastic theory.

7.
Nano Lett ; 24(15): 4641-4648, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579120

RESUMO

The intrinsic properties of materials play a substantial role in light-matter interactions, impacting both bulk metals and nanostructures. While plasmonic nanostructures exhibit strong interactions with photons via plasmon resonances, achieving efficient light absorption/scattering in other transition metals remains a challenge, impeding various applications related to optoelectronics, chemistry, and energy harvesting. Here, we propose a universal strategy to enhance light-matter interaction, through introducing voids onto the surface of metallic nanoparticles. This strategy spans nine metals including those traditionally considered optically inactive. The absorption cross section of void-filled nanoparticles surpasses the value of plasmonic (Ag/Au) counterparts with tunable resonance peaks across a broad spectral range. Notably, this enhancement is achieved under arbitrary polarizations and varied particle sizes and in the presence of geometric disorder, highlighting the universal adaptability. Our strategy holds promise for inspiring emerging devices in photocatalysis, bioimaging, optical sensing, and beyond, particularly when metals other than gold or silver are preferred.

8.
ACS Nano ; 18(18): 11644-11654, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653474

RESUMO

Nanophotonic devices excel at confining light into intense hot spots of electromagnetic near fields, creating exceptional opportunities for light-matter coupling and surface-enhanced sensing. Recently, all-dielectric metasurfaces with ultrasharp resonances enabled by photonic bound states in the continuum (BICs) have unlocked additional functionalities for surface-enhanced biospectroscopy by precisely targeting and reading out the molecular absorption signatures of diverse molecular systems. However, BIC-driven molecular spectroscopy has so far focused on end point measurements in dry conditions, neglecting the crucial interaction dynamics of biological systems. Here, we combine the advantages of pixelated all-dielectric metasurfaces with deep learning-enabled feature extraction and prediction to realize an integrated optofluidic platform for time-resolved in situ biospectroscopy. Our approach harnesses high-Q metasurfaces specifically designed for operation in a lossy aqueous environment together with advanced spectral sampling techniques to temporally resolve the dynamic behavior of photoswitchable lipid membranes. Enabled by a software convolutional neural network, we further demonstrate the real-time classification of the characteristic cis and trans membrane conformations with 98% accuracy. Our synergistic sensing platform incorporating metasurfaces, optofluidics, and deep learning reveals exciting possibilities for studying multimolecular biological systems, ranging from the behavior of transmembrane proteins to the dynamic processes associated with cellular communication.


Assuntos
Inteligência Artificial , Propriedades de Superfície , Análise Espectral/métodos , Lipídeos de Membrana/química , Aprendizado Profundo
9.
Nat Commun ; 15(1): 2008, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443418

RESUMO

Van der Waals (vdW) materials, including hexagonal boron nitride (hBN), are layered crystalline solids with appealing properties for investigating light-matter interactions at the nanoscale. hBN has emerged as a versatile building block for nanophotonic structures, and the recent identification of native optically addressable spin defects has opened up exciting possibilities in quantum technologies. However, these defects exhibit relatively low quantum efficiencies and a broad emission spectrum, limiting potential applications. Optical metasurfaces present a novel approach to boost light emission efficiency, offering remarkable control over light-matter coupling at the sub-wavelength regime. Here, we propose and realise a monolithic scalable integration between intrinsic spin defects in hBN metasurfaces and high quality (Q) factor resonances, exceeding 102, leveraging quasi-bound states in the continuum (qBICs). Coupling between defect ensembles and qBIC resonances delivers a 25-fold increase in photoluminescence intensity, accompanied by spectral narrowing to below 4 nm linewidth and increased narrowband spin-readout efficiency. Our findings demonstrate a new class of metasurfaces for spin-defect-based technologies and pave the way towards vdW-based nanophotonic devices with enhanced efficiency and sensitivity for quantum applications in imaging, sensing, and light emission.

10.
ACS Photonics ; 11(2): 714-722, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405393

RESUMO

Surface-enhanced spectroscopy techniques are the method-of-choice to characterize adsorbed intermediates occurring during electrochemical reactions, which are crucial in realizing a green and sustainable future. Characterizing species with low coverage or short lifetimes has so far been limited by low signal enhancement. Recently, single-band metasurface-driven surface-enhanced infrared absorption spectroscopy (SEIRAS) has been pioneered as a promising technology to monitor a single vibrational mode during electrochemical CO oxidation. However, electrochemical reactions are complex, and their understanding requires the simultaneous monitoring of multiple adsorbed species in situ, hampering the adoption of nanostructured electrodes in spectro-electrochemistry. Here, we develop a multi-band nanophotonic-electrochemical platform that simultaneously monitors in situ multiple adsorbed species emerging during cyclic voltammetry scans by leveraging the high resolution offered by the reproducible nanostructuring of the working electrode. Specifically, we studied the electrochemical reduction of CO2 on a Pt surface and used two separately tuned metasurface arrays to monitor two adsorption configurations of CO with vibrational bands at ∼2030 and ∼1840 cm-1. Our platform provides a ∼40-fold enhancement in the detection of characteristic absorption signals compared to conventional broadband electrochemically roughened platinum films. A straightforward methodology is outlined starting with baselining our system in a CO-saturated environment and clearly detecting both configurations of adsorption. In contrast, during the electrochemical reduction of CO2 on platinum in K2CO3, CO adsorbed in a bridged configuration could not be detected. We anticipate that our technology will guide researchers in developing similar sensing platforms to simultaneously detect multiple challenging intermediates, with low surface coverage or short lifetimes.

11.
Nano Lett ; 24(8): 2437-2443, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354357

RESUMO

Nanoantennas capable of large fluorescence enhancement with minimal absorption are crucial for future optical technologies from single-photon sources to biosensing. Efficient dielectric nanoantennas have been designed, however, evaluating their performance at the individual emitter level is challenging due to the complexity of combining high-resolution nanofabrication, spectroscopy and nanoscale positioning of the emitter. Here, we study the fluorescence enhancement in infinity-shaped gallium phosphide (GaP) nanoantennas based on a topologically optimized design. Using fluorescence correlation spectroscopy (FCS), we probe the nanoantennas enhancement factor and observe an average of 63-fold fluorescence brightness enhancement with a maximum of 93-fold for dye molecules in nanogaps between 20 and 50 nm. The experimentally determined fluorescence enhancement of the nanoantennas is confirmed by numerical simulations of the local density of optical states (LDOS). Furthermore, we show that beyond design optimization of dielectric nanoantennas, increased performances can be achieved via tailoring of nanoantenna fabrication.

13.
Angew Chem Int Ed Engl ; 63(11): e202319920, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38236010

RESUMO

Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.

14.
Light Sci Appl ; 13(1): 7, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167240

RESUMO

High refractive index dielectric nanoantennas strongly modify the decay rate via the Purcell effect through the design of radiative channels. Due to their dielectric nature, the field is mainly confined inside the nanostructure and in the gap, which is hard to probe with scanning probe techniques. Here we use single-molecule fluorescence lifetime imaging microscopy (smFLIM) to map the decay rate enhancement in dielectric GaP nanoantenna dimers with a median localization precision of 14 nm. We measure, in the gap of the nanoantenna, decay rates that are almost 30 times larger than on a glass substrate. By comparing experimental results with numerical simulations we show that this large enhancement is essentially radiative, contrary to the case of plasmonic nanoantennas, and therefore has great potential for applications such as quantum optics and biosensing.

15.
Nano Lett ; 24(5): 1784-1791, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265953

RESUMO

Selective control of light is essential for optical science and technology, with numerous applications. However, optical selectivity in the angular momentum of light has been quite limited, remaining constant by increasing the incident light power on previous passive optical devices. Here, we demonstrate a nonlinear boost of optical selectivity in both the spin and orbital angular momentum of light through near-field selective excitation of single-mode nanolasers. Our designed hybrid nanolaser circuits consist of plasmonic metasurfaces and individually placed perovskite nanowires, enabling subwavelength focusing of angular-momentum-distinctive plasmonic fields and further selective excitation of nanolasers in nanowires. The optically selected nanolaser with a nonlinear increase of light emission greatly enhances the baseline optical selectivity offered by the metasurface from about 0.4 up to near unity. Our demonstrated hybrid nanophotonic platform may find important applications in all-optical logic gates and nanowire networks, ultrafast optical switches, nanophotonic detectors, and on-chip optical and quantum information processing.

16.
ACS Nano ; 18(1): 451-460, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37971988

RESUMO

Plasmonic catalysts have the potential to accelerate and control chemical reactions with light by exploiting localized surface plasmon resonances. However, the mechanisms governing plasmonic catalysis are not simple to decouple. Several plasmon-derived phenomena, such as electromagnetic field enhancements, temperature, or the generation of charge carriers, can affect the reactivity of the system. These effects are convoluted with the inherent (nonplasmonic) catalytic properties of the metal surface. Disentangling these coexisting effects is challenging but is the key to rationally controlling reaction pathways and enhancing reaction rates. This study utilizes super-resolution fluorescence microscopy to examine the mechanisms of plasmonic catalysis at the single-particle level. The reduction reaction of resazurin to resorufin in the presence of Au nanorods coated with a porous silica shell is investigated in situ. This allows the determination of reaction rates with a single-molecule sensitivity and subparticle resolution. By variation of the irradiation wavelength, it is possible to examine two different regimes: photoexcitation of the reactant molecules and photoexcitation of the nanoparticle's plasmon resonance. In addition, the measured spatial distribution of reactivity allows differentiation between superficial and far-field effects. Our results indicate that the reduction of resazurin can occur through more than one reaction pathway, being most efficient when the reactant is photoexcited and is in contact with the Au surface. In addition, it was found that the spatial distribution of enhancements varies, depending on the underlying mechanism. These findings contribute to the fundamental understanding of plasmonic catalysis and the rational design of future plasmonic nanocatalysts.

17.
Nat Commun ; 14(1): 7222, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940676

RESUMO

Structured light has proven useful for numerous photonic applications. However, the current use of structured light in optical fiber science and technology is severely limited by mode mixing or by the lack of optical elements that can be integrated onto fiber end-faces for wavefront engineering, and hence generation of structured light is still handled outside the fiber via bulky optics in free space. We report a metafiber platform capable of creating arbitrarily structured light on the hybrid-order Poincaré sphere. Polymeric metasurfaces, with unleashed height degree of freedom and a greatly expanded 3D meta-atom library, were 3D laser nanoprinted and interfaced with polarization-maintaining single-mode fibers. Multiple metasurfaces were interfaced on the fiber end-faces, transforming the fiber output into different structured-light fields, including cylindrical vector beams, circularly polarized vortex beams, and arbitrary vector field. Our work provides a paradigm for advancing optical fiber science and technology towards fiber-integrated light shaping, which may find important applications in fiber communications, fiber lasers and sensors, endoscopic imaging, fiber lithography, and lab-on-fiber technology.

18.
Light Sci Appl ; 12(1): 250, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828041

RESUMO

The realization of lossless metasurfaces with true chirality crucially requires the fabrication of three-dimensional structures, constraining experimental feasibility and hampering practical implementations. Even though the three-dimensional assembly of metallic nanostructures has been demonstrated previously, the resulting plasmonic resonances suffer from high intrinsic and radiative losses. The concept of photonic bound states in the continuum (BICs) is instrumental for tailoring radiative losses in diverse geometries, especially when implemented using lossless dielectrics, but applications have so far been limited to planar structures. Here, we introduce a novel nanofabrication approach to unlock the height of individual resonators within all-dielectric metasurfaces as an accessible parameter for the efficient control of resonance features and nanophotonic functionalities. In particular, we realize out-of-plane symmetry breaking in quasi-BIC metasurfaces and leverage this design degree of freedom to demonstrate an optical all-dielectric quasi-BIC metasurface with maximum intrinsic chirality that responds selectively to light of a particular circular polarization depending on the structural handedness. Our experimental results not only open a new paradigm for all-dielectric BICs and chiral nanophotonics, but also promise advances in the realization of efficient generation of optical angular momentum, holographic metasurfaces, and parity-time symmetry-broken optical systems.

19.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220343, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691466

RESUMO

Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (Vo) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following Vo formation and healing kinetics. This work establishes comparison between PIERS and Vo-induced SERS approaches in defected noble-metal-free titanium dioxide (TiO2-x) films to further confirm the role of Vo in PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum annealing and argon etching), correlation of Vo kinetics and distribution could be established. A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic materials are also presented. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

20.
Nano Lett ; 23(19): 8891-8897, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726256

RESUMO

Two-dimensional chiral metasurfaces seem to contradict Lord Kelvin's geometric definition of chirality since they can be made to coincide by performing rotational operations. Nevertheless, most planar chiral metasurface designs often use complex meta-atom shapes to create flat versions of three-dimensional helices, although the visual appearance does not improve their chiroptical response but complicates their optimization and fabrication due to the resulting large parameter space. Here we present one of the geometrically simplest two-dimensional chiral metasurface platforms consisting of achiral dielectric rods arranged in a square lattice. Chirality is created by rotating the individual meta-atoms, making their arrangement chiral and leading to chiroptical responses that are stronger or comparable to more complex designs. We show that resonances depending on the arrangement are robust against geometric variations and behave similarly in experiments and simulations. Finally, we explain the origin of chirality and behavior of our platform by simple considerations of the geometric asymmetry and gap size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA