Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1006072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388477

RESUMO

The frustule of diatoms has an exceptional structure composed of inorganic and organic molecules. In the organic fraction, protein families were identified whose members are expected to have a complex cellular targeting to their final location within the frustule. Here we investigated for frustule-targeting signals two representatives of the cingulin family, the proteins CinY2 and CinW2; beside an already known, classical signal peptide, we have identified further regions involved in cellular targeting. By using these regions as a search criteria we were able to identify two new frustule proteins. In addition, we showed that the temporal regulation of the gene expression determines the final location of one cingulin. Our results therefore point to a sophisticated cellular and extracellular targeting of frustule components to build the fascinating frustule structure of a diatom.

2.
Front Plant Sci ; 13: 889662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783940

RESUMO

Peroxisomes participate in several important metabolic processes in eukaryotic cells, such as the detoxification of reactive oxygen species (ROS) or the degradation of fatty acids by ß-oxidation. Recently, the presence of peroxisomes in the cryptophyte Guillardia theta and other "chromalveolates" was revealed by identifying proteins for peroxisomal biogenesis. Here, we investigated the subcellular localization of candidate proteins of G. theta in the diatom Phaeodactylum tricornutum, either possessing a putative peroxisomal targeting signal type 1 (PTS1) sequence or factors lacking a peroxisomal targeting signal but known to be involved in ß-oxidation. Our results indicate important contributions of the peroxisomes of G. theta to the carbohydrate, ether phospholipid, nucleotide, vitamin K, ROS, amino acid, and amine metabolisms. Moreover, our results suggest that in contrast to many other organisms, the peroxisomes of G. theta are not involved in the ß-oxidation of fatty acids, which exclusively seems to occur in the cryptophyte's mitochondria.

3.
BMC Ecol Evol ; 21(1): 46, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740894

RESUMO

BACKGROUND: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. RESULTS: We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. CONCLUSION: Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).


Assuntos
Criptosporidiose , Cryptosporidium , Proteínas Ferro-Enxofre , Animais , Ferro , Proteínas Ferro-Enxofre/genética , Filogenia , Enxofre
4.
Methods Enzymol ; 648: 435-455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579415

RESUMO

Plastic pollution has become a serious issue on Earth. Although efficient industrial recycling processes exist, a significant fraction of plastic waste still ends up in nature, where it can endure for centuries. Slow mechanical and chemical decay lead to the formation of micro- and nanoplastics, which are washed from land into rivers and finally end up in the oceans. As such particles cannot be efficiently removed from the environment, biological degradation mechanisms are highly desirable. Several enzymes have been described that are capable of degrading certain plastic materials such as polyethylene terephthalate (PET). Such enzymes have a huge potential for future biotechnology applications. However, they require model systems that can be efficiently adapted to very specific conditions. Here, we present detailed instructions, how to convert the model diatom Phaeodactylum into a solar-fueled microbial cell factory for PETase expression, resulting in a whole cell catalyst for PET degradation at moderate temperatures under saltwater conditions.


Assuntos
Microalgas , Polietilenotereftalatos , Oceanos e Mares , Plásticos
5.
Mar Pollut Bull ; 163: 111950, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444995

RESUMO

A big challenge of the 21st century is to cope with the huge amounts of plastic waste on Earth. Especially the oceans are heavily polluted with plastics. To counteract this issue, biological (enzymatic) plastic decomposition is increasingly gaining attention. Recently it was shown that polyethylene terephthalate (PET) can be degraded in a saltwater-based environment using bacterial PETase produced by a marine diatom. At moderate temperatures, plastic biodegradation is slow and requires sensitive methods for detection, at least at initial stages. However, conventional methods for verifying the plastic degradation are either complex, expensive, time-consuming or they interfere with the degradation process. Here, we adapt lensless digital holographic microscopy (LDHM) as a new application for efficiently monitoring enzymatic degradation of a PET glycol copolymer (PETG). LDHM is a cost-effective, compact and sensitive optical method. We demonstrate enzymatic PETG degradation over a time course of 43 days employing numerical analysis of LDHM images.


Assuntos
Microscopia , Plásticos , Bactérias , Biodegradação Ambiental , Oceanos e Mares
6.
Biol Chem ; 401(12): 1495-1501, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32845857

RESUMO

Phosphorus (P) is a crucial element and diatoms, unicellular phototrophic organisms, evolved efficient strategies to handle limiting phosphorus concentrations in the oceans. In the last decade, several groups investigated the model diatom Phaeodactylum tricornutum concerning phosphate homeostasis mechanisms. Here, we summarize the actual status of knowledge by linking the available data sets, thereby indicating experimental limits but also future research directions.


Assuntos
Diatomáceas/química , Diatomáceas/metabolismo , Fósforo/metabolismo , Aclimatação , Modelos Biológicos , Fósforo/química , Estresse Fisiológico
7.
Front Plant Sci ; 11: 579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582227

RESUMO

Unicellular organisms that live in marine environments must cope with considerable fluctuations in the availability of inorganic phosphate (Pi). Here, we investigated the extracellular Pi concentration-dependent expression, as well as the intracellular or extracellular localization, of phosphatases and phosphate transporters of the diatom Phaeodactylum tricornutum. We identified Pi-regulated plasma membrane-localized, ER-localized, and secreted phosphatases, in addition to plasma membrane-localized, vacuolar membrane-localized, and plastid-surrounding membrane-localized phosphate transporters that were also regulated in a Pi concentration-dependent manner. These studies not only add further knowledge to already existing transcriptomic data, but also highlight the capacity of the diatom to distribute Pi intracellularly and to mobilize Pi from extracellular and intracellular resources.

8.
Microb Cell Fact ; 19(1): 1, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898497

RESUMO

The author's middle name is missed out in the original publication of the article [1]. The correct coauthor's name is Tobias J. Erb.

9.
Nature ; 575(7783): 500-504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723261

RESUMO

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Assuntos
Organismos Aquáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes e Vias Metabólicas , Proteobactérias/metabolismo , Oxirredutases do Álcool/metabolismo , Aldeído Liases/metabolismo , Organismos Aquáticos/enzimologia , Ácido Aspártico/metabolismo , Biocatálise , Glioxilatos/metabolismo , Hidroliases/metabolismo , Cinética , Oxirredutases/metabolismo , Fitoplâncton/enzimologia , Fitoplâncton/metabolismo , Proteobactérias/enzimologia , Transaminases/metabolismo
10.
Microb Cell Fact ; 18(1): 171, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601227

RESUMO

BACKGROUND: The biological degradation of plastics is a promising method to counter the increasing pollution of our planet with artificial polymers and to develop eco-friendly recycling strategies. Polyethylene terephthalate (PET) is a thermoplast industrially produced from fossil feedstocks since the 1940s, nowadays prevalently used in bottle packaging and textiles. Although established industrial processes for PET recycling exist, large amounts of PET still end up in the environment-a significant portion thereof in the world's oceans. In 2016, Ideonella sakaiensis, a bacterium possessing the ability to degrade PET and use the degradation products as a sole carbon source for growth, was isolated. I. sakaiensis expresses a key enzyme responsible for the breakdown of PET into monomers: PETase. This hydrolase might possess huge potential for the development of biological PET degradation and recycling processes as well as bioremediation approaches of environmental plastic waste. RESULTS: Using the photosynthetic microalga Phaeodactylum tricornutum as a chassis we generated a microbial cell factory capable of producing and secreting an engineered version of PETase into the surrounding culture medium. Initial degradation experiments using culture supernatant at 30 °C showed that PETase possessed activity against PET and the copolymer polyethylene terephthalate glycol (PETG) with an approximately 80-fold higher turnover of low crystallinity PETG compared to bottle PET. Moreover, we show that diatom produced PETase was active against industrially shredded PET in a saltwater-based environment even at mesophilic temperatures (21 °C). The products resulting from the degradation of the PET substrate were mainly terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalic acid (MHET) estimated to be formed in the micromolar range under the selected reaction conditions. CONCLUSION: We provide a promising and eco-friendly solution for biological decomposition of PET waste in a saltwater-based environment by using a eukaryotic microalga instead of a bacterium as a model system. Our results show that via synthetic biology the diatom P. tricornutum indeed could be converted into a valuable chassis for biological PET degradation. Overall, this proof of principle study demonstrates the potential of the diatom system for future biotechnological applications in biological PET degradation especially for bioremediation approaches of PET polluted seawater.


Assuntos
Burkholderiales/metabolismo , Hidrolases/metabolismo , Microalgas/metabolismo , Polietilenotereftalatos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biologia Marinha , Microbiologia da Água
11.
Genome Biol Evol ; 11(6): 1618-1629, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31124562

RESUMO

Nucleomorphs are small nuclei that evolved from the nucleus of former eukaryotic endosymbionts of cryptophytes and chlorarachniophytes. These enigmatic organelles reside in their complex plastids and harbor the smallest and most compacted eukaryotic genomes investigated so far. Although the coding capacity of the nucleomorph genomes is small, a significant percentage of the encoded proteins (predicted nucleomorph-encoded proteins, pNMPs) is still not functionally annotated. We have analyzed pNMPs with unknown functions via Phyre2, a bioinformatic tool for prediction and modeling of protein structure, resulting in a functional annotation of 215 pNMPs out of 826 uncharacterized open reading frames of cryptophytes. The newly annotated proteins are predicted to participate in nucleomorph-specific functions such as chromosome organization and expression, as well as in modification and degradation of nucleomorph-encoded proteins. Additionally, we have functionally assigned nucleomorph-encoded, putatively plastid-targeted proteins among the reinvestigated pNMPs. Hints for a putative function in the periplastid compartment, the cytoplasm surrounding the nucleomorphs, emerge from the identification of pNMPs that might be homologs of endomembrane system-related proteins. These proteins are discussed in respect to their putative functions.


Assuntos
Criptófitas/citologia , Criptófitas/genética , Cromatina , Cromossomos , Fases de Leitura Aberta , Proteoma/genética
12.
Genome Biol Evol ; 10(8): 2061-2071, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085124

RESUMO

Plastids surrounded by four membranes harbor a special compartment between the outer and inner plastid membrane pair, the so-called periplastidal compartment (PPC). This cellular structure is usually presumed to be the reduced cytoplasm of a eukaryotic phototrophic endosymbiont, which was integrated into a host cell and streamlined into a plastid with a complex membrane structure. Up to date, no mitochondrion or mitochondrion-related organelle has been identified in the PPC of any representative. However, two prominent groups, the cryptophytes and the chlorarachniophytes, still harbor a reduced cell nucleus of symbiont origin, the nucleomorph, in their PPCs. Generally, many cytoplasmic and nucleus-located eukaryotic proteins need an iron-sulfur cofactor for their functionality. Beside some exceptions, their synthesis is depending on a so-called iron-sulfur complex (ISC) assembly machinery located in the mitochondrion. This machinery provides the cytoplasm with a still unknown sulfur component, which is then converted into iron-sulfur clusters via a cytosolic iron-sulfur protein assembly (CIA) machinery. Here, we investigated if a CIA machinery is present in mitochondrion-lacking PPCs. By using bioinformatic screens and in vivo-localizations of candidate proteins, we show that the presence of a PPC-specific CIA machinery correlates with the presence of a nucleomorph. Phylogenetic analyses of PPC- and host specific CIA components additionally indicate a complex evolution of the CIA machineries in organisms having plastids surrounded by four membranes.


Assuntos
Criptófitas/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Plastídeos/metabolismo , Compartimento Celular , Criptófitas/genética , Citosol/metabolismo , Diatomáceas/genética , Genoma , Modelos Biológicos , Filogenia
13.
Front Plant Sci ; 9: 740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928285

RESUMO

CRISPR/Cas9 is a powerful tool for genome editing. We constructed an easy-to-handle expression vector for application in the model organism Phaeodactylum tricornutum and tested its capabilities in order to apply CRISPR/Cas9 technology for our purpose. In our experiments, we targeted two different genes, screened for mutations and analyzed mutated diatoms in a three-step process. In the end, we identified cells, showing either monoallelic or homo-biallelic targeted mutations. Thus, we confirm that application of the CRISPR/Cas9 system for P. tricornutum is very promising, although, as discussed, overlooked pitfalls have to be considered.

14.
Biochemistry ; 57(26): 3658-3664, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29863338

RESUMO

Dimeric disulfide-linked peptides are formed by the regioselective oxidative folding of thiol precursors containing the CX3CX2CX3C tetracysteine motif. Here, we investigate the general applicability of this peptide as a dimerization motif for different proteins. By recombinant DNA technology, the peptide CHWECRGCRLVC was loaded with proteins, and functional homodimers were obtained upon oxidative folding. Attached to the N-terminus of the dodecapeptide, the prokaryotic enzyme limonene epoxide hydrolase (LEH) completely forms a covalent antiparallel dimer. In a diatom expression system, the monoclonal antibody CL4 mAb is released in its functional form when its natural CPPC central parallel hinge is exchanged for the designed tetra-Cys hinge motif. To improve our understanding of the regioselectivity of tetra-disulfide formation, we provoked the formation of heterodimeric hinge peptides by mixing two different tetra-Cys peptides and characterizing the heterodimer by mass spectrometry and nuclear magnetic resonance spectroscopy.


Assuntos
Cisteína/análogos & derivados , Oligopeptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Dissulfetos/química , Hidrolases/química , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Proteínas Recombinantes/química
15.
Proc Natl Acad Sci U S A ; 115(19): E4396-E4405, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686075

RESUMO

The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4aE228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Galectina 3/metabolismo , Corpos Multivesiculares/metabolismo , Fatores de Transcrição/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Cães , Endossomos/ultraestrutura , Exossomos/ultraestrutura , Células Madin Darby de Rim Canino , Microscopia Eletrônica , Corpos Multivesiculares/ultraestrutura
16.
Biotechnol J ; 13(4): e1700496, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29194986

RESUMO

Microalgae are unicellular eukaryotic organisms which represent an emerging alternative to other cell biofactories commonly used to produce monoclonal antibodies. Microalgae display several biotechnological advantages such as their rapid growth rate and their phototrophic lifestyle allowing low production costs as protein expression is solar-fueled. Recently, a fully assembled recombinant IgG antibody directed against Hepatitis B surface antigen is produced and secreted in the culture medium of the diatom Phaeodactylum tricornutum. A biochemical characterization of this recombinant antibody demonstrated that the Asn-297 is N-glycosylated by oligomannosides. In the immune system, antibodies interact with effector molecules and cells through their Fc part and the recognition of Fcγ receptors (FcγR) which are important for inducing phagocytosis of opsonized microbes. Interactions between IgG and FcγR are influenced by the N-glycan structures present on the Asn-297. In this study, the authors characterized the binding capacity of the anti-hepatitis B recombinant IgG produced in P. tricornutum to two human Fcγ receptors (FcγRI and IIIa) using a cellular binding assay and surface plasmon resonance (SPR). This allowed us to demonstrate that the alga-made antibody is able to bind FcγRI with a reduced affinity and engages FcyRIIIa with 3-times higher affinity compared to a control human IgG1.


Assuntos
Anticorpos Monoclonais/metabolismo , Diatomáceas/crescimento & desenvolvimento , Antígenos de Superfície da Hepatite B/imunologia , Receptores de IgG/metabolismo , Asparagina/química , Meios de Cultura/química , Diatomáceas/metabolismo , Glicosilação , Células HEK293 , Humanos , Oligossacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Células THP-1
18.
Genome Biol Evol ; 9(11): 3108-3121, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126146

RESUMO

Apicomplexans are successful parasites responsible for severe human diseases including malaria, toxoplasmosis, and cryptosporidiosis. For many years, it has been discussed whether these parasites are in possession of peroxisomes, highly variable eukaryotic organelles usually involved in fatty acid degradation and cellular detoxification. Conflicting experimental data has been published. With the age of genomics, ever more high quality apicomplexan genomes have become available, that now allow a new assessment of the dispute. Here, we provide bioinformatic evidence for the presence of peroxisomes in Toxoplasma gondii and other coccidians. For these organisms, we have identified a complete set of peroxins, probably responsible for peroxisome biogenesis, division, and protein import. Moreover, via a global screening for peroxisomal targeting signals, we were able to show that a complete set of fatty acid ß-oxidation enzymes is equipped with either PTS1 or PTS2 sequences, most likely mediating transport of these factors to putative peroxisomes in all investigated Coccidia. Our results further imply a life cycle stage-specific presence of peroxisomes in T. gondii and suggest several independent losses of peroxisomes during the evolution of apicomplexan parasites.


Assuntos
Evolução Biológica , Coccídios/citologia , Peroxissomos/genética , Toxoplasma/citologia , Coccídios/crescimento & desenvolvimento , Coccídios/metabolismo , Estágios do Ciclo de Vida , Oxirredutases , Peroxissomos/química , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/química , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
19.
Microb Cell Fact ; 16(1): 131, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28750668

RESUMO

BACKGROUND: The ideal protein expression system should provide recombinant proteins in high quality and quantity involving low production costs only. However, especially for complex therapeutic proteins like monoclonal antibodies many challenges remain to meet this goal and up to now production of monoclonal antibodies is very costly and delicate. Particularly, emerging disease outbreaks like Ebola virus in Western Africa in 2014-2016 make it necessary to reevaluate existing production platforms and develop robust and cheap alternatives that are easy to handle. RESULTS: In this study, we engineered the microalga Phaeodactylum tricornutum to produce monoclonal IgG antibodies against the nucleoprotein of Marburg virus, a close relative of Ebola virus causing severe hemorrhagic fever with high fatality rates in humans. Sequences for both chains of a mouse IgG antibody were retrieved from a murine hybridoma cell line and implemented in the microalgal system. Fully assembled antibodies were shown to be secreted by the alga and antibodies were proven to be functional in western blot, ELISA as well as IFA studies just like the original hybridoma produced IgG. Furthermore, synthetic variants with constant regions of a rabbit IgG and human IgG with optimized codon usage were produced and characterized. CONCLUSIONS: This study highlights the potential of microalgae as robust and low cost expression platform for monoclonal antibodies secreting IgG antibodies directly into the culture medium. Microalgae possess rapid growth rates, need basically only water, air and sunlight for cultivation and are very easy to handle.


Assuntos
Anticorpos Monoclonais/metabolismo , Diatomáceas/metabolismo , Marburgvirus/genética , Ribonucleoproteínas/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Hibridomas/citologia , Hibridomas/metabolismo , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Microalgas/metabolismo , Microscopia de Fluorescência , Proteínas do Nucleocapsídeo , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
20.
Bioessays ; 39(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28621807

RESUMO

Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism.


Assuntos
Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Animais , Compartimento Celular/genética , Membrana Celular/genética , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA