Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Resour Res ; 56(7)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33958831

RESUMO

Across South Asia, millions of villagers have reduced their exposure to high-arsenic (As) groundwater by switching to low-As wells. Isotopic tracers and flow modeling are used in this study to understand the groundwater flow system of a semi-confined aquifer of Pleistocene (>10 kyr) age in Bangladesh that is generally low in As but has been perturbed by massive pumping at a distance of about 25 km for the municipal water supply of Dhaka. A 10- to 15-m-thick clay aquitard caps much of the intermediate aquifer (>40- to 90-m depth) in the 3-km2 study area, with some interruptions by younger channel sand deposits indicative of river scouring. Hydraulic heads in the intermediate aquifer below the clay-capped areas are 1-2 m lower than in the high-As shallow aquifer above the clay layer. In contrast, similar heads in the shallow and intermediate aquifer are observed where the clay layer is missing. The head distribution suggests a pattern of downward flow through interruptions in the aquitard and lateral advection from the sandy areas to the confined portion of the aquifer. The interpreted flow system is consistent with 3H-3He ages, stable isotope data, and groundwater flow modeling. Lateral flow could explain an association of elevated As with high methane concentrations within layers of gray sand below certain clay-capped portions of the Pleistocene aquifer. An influx of dissolved organic carbon from the clay layer itself leading to a reduction of initially orange sands has also likely contributed to the rise of As.

2.
Sci Total Environ ; 595: 63-71, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388451

RESUMO

Recent studies have demonstrated that the supply of relatively young organic carbon stimulates the release of arsenic to groundwater in Bangladesh. This study explores the potential role of human and livestock waste as a significant source of this carbon in a densely populated rural area with limited sanitation. Profiles of aquifer sediment samples were analyzed for phytosterols and coprostanol to assess the relative contributions of plant-derived and human/livestock waste-derived organic carbon at two well-characterized sites in Araihazar. Coprostanol concentrations increased with depth from non-detection (<10m at Site B and <23m at Site F) to maxima of 1.3 and 0.5ng/g in aquifer sands recovered from 17m (Site B) and 26m (Site F), respectively. The commonly used sewage contamination index ([5ß-coprostanol]/([5α-cholestanol]+[5ß-coprostanol])) exceeds 0.7 between 12 and 19m at Site B and between 24 and 26m at Site F, indicating input of human/livestock waste to these depths. Urine/fecal input within the same depth range is supported by groundwater Cl/Br mass ratios >1000 compared to Cl/Br <500 at depths >50m. Installed tube wells in the area's study sites may act as a conduit for DOC and specifically human/livestock waste into the aquifer during flood events. The depth range of maximum input of human/livestock waste indicated by these independent markers coincides with the highest dissolved Fe (10-20mg/L) and As (200-400µg/L) concentrations in groundwater at both sites. The new findings suggest that the oxidation of human/livestock waste coupled to the reductive dissolution of iron-(oxy)-hydroxides and/or arsenate may enhance groundwater contamination with As.

3.
Environ Sci Technol ; 50(14): 7353-63, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27333443

RESUMO

The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.


Assuntos
Arsênio , Carbono , Bangladesh , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Fosfolipídeos , Poluentes Químicos da Água
4.
J Water Sanit Hyg Dev ; 6(1): 142-150, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27087915

RESUMO

Community wells that extend deeper than most private wells are crucial for reducing exposure to groundwater arsenic (As) in rural Bangladesh. This study evaluates the impact on access to safe drinking water of 915 such intermediate (90-150 m) and deep (>150 m) wells across a 180 km2 area where a total of 48,790 tubewells were tested with field kits in 2012-13. Half the shallow private wells meet the Bangladesh standard of 50 µg/L for As in drinking water, whereas 92% of the intermediate and deep wells meet the more restrictive World Health Organization guideline for As in drinking water of 10 µg/L. As a proxy for water access, distance calculations show that 29% of shallow wells with >50 µg/L As are located within walking distance (100 m) of at least one of the 915 intermediate or deep wells. Similar calculations for a hypothetical more even distribution of deep wells show that 74% of shallow wells with >50 µg/L As could have been located within 100 m of the same number deep wells. These observations and well-usage data suggest that community wells in Araihazar, and probably elsewhere in Bangladesh, were not optimally allocated by the government because of elite capture.

5.
J Hydrol (Amst) ; 539: 674-686, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28966395

RESUMO

Sandy aquifers deposited >12,000 years ago, some as shallow as 30 m, have provided a reliable supply of low-arsenic (As) drinking water in rural Bangladesh. This study concerns the potential risk of contaminating these aquifers in areas surrounding the city of Dhaka where hydraulic heads in aquifers >150 m deep have dropped by 70 m in a few decades due to municipal pumping. Water levels measured continuously from 2012 to 2014 in 12 deep (>150m), 3 intermediate (90-150 m) and 6 shallow (<90 m) community wells, 1 shallow private well, and 1 river piezometer show that the resulting drawdown cone extends 15-35 km east of Dhaka. Water levels in 4 low-As community wells within the 62-147 m depth range closest to Dhaka were inaccessible by suction for up to a third of the year. Lateral hydraulic gradients in the deep aquifer system ranged from 1.7×10-4 to 3.7×10-4 indicating flow towards Dhaka throughout 2012-2014. Vertical recharge on the edge of the drawdown cone was estimated at 0.21±0.06 m/yr. The data suggest that continued municipal pumping in Dhaka could eventually contaminate some relatively shallow community wells.

6.
Water Resour Res ; 52(5): 3324-3349, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-28966406

RESUMO

More than 100,000 community wells have been installed in the 150-300 m depth range throughout Bangladesh over the past decade to provide low-arsenic drinking water (<10 µg/L As), but little is known about how aquifers tapped by these wells are recharged. Within a 25 km2 area of Bangladesh east of Dhaka, groundwater from 65 low-As wells in the 35-240 m depth range was sampled for tritium (3H), oxygen and hydrogen isotopes of water (18O/16O and 2H/1H), carbon isotope ratios in dissolved inorganic carbon (DIC, 14C/12C and 13C/12C), noble gases, and a suite of dissolved constituents, including major cations, anions, and trace elements. At shallow depths (<90 m), 24 out of 42 wells contain detectable 3H of up to 6 TU, indicating the presence of groundwater recharged within 60 years. Radiocarbon (14C) ages in DIC range from modern to 10 kyr. In the 90-240 m depth range, however, only 5 wells shallower than 150 m contain detectable 3H (<0.3 TU) and 14C ages of DIC cluster around 10 kyr. The radiogenic helium (4He) content in groundwater increases linearly across the entire range of 14C ages at a rate of 2.5×10-12 ccSTP 4He g-1 yr-1. Within the samples from depths >90 m, systematic relationships between 18O/16O, 2H/1H, 13C/12C and 14C/12C, and variations in noble gas temperatures, suggest that changes in monsoon intensity and vegetation cover occurred at the onset of the Holocene, when the sampled water was recharged. Thus, the deeper low-As aquifers remain relatively isolated from the shallow, high-As aquifer.

7.
Adv Water Resour ; 63: 120-130, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24821993

RESUMO

Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of E. coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: 1) irreversible attachment only (best-fit ki=7.6 day-1); 2) reversible attachment only (ka=10.5 and kd=0.2 day-1); and 3) a combination of reversible and irreversible modes of attachment (ka=60, kd=7.6, ki=5.2 day-1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.

8.
Environ Sci Technol ; 41(19): 6718-24, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17969686

RESUMO

Landfills have the potential to mobilize arsenic via induction of reducing conditions in groundwater and subsequent desorption from or dissolution of arsenic-bearing iron phases. Laboratory incubation experiments were conducted with materials from a landfill where such processes are occurring. These experiments explored the potential for induced sulfate reduction to immobilize dissolved arsenic in situ. The native microbial community at this site reduced sulfate in the presence of added acetate. Acetate respiration and sulfate reduction were observed concurrent with dissolved iron concentrations initially increasing from 0.6 microM (0.03 mg L(-1)) to a maximum of 111 microM (6.1 mg L(-1)) and subsequently decreasing to 0.74 microM (0.04 mg L(-1)). Dissolved arsenic concentrations initially covaried with iron but subsequently increased again as sulfide accumulated, consistent with the formation of soluble thioarsenite complexes. Dissolved arsenic concentrations subsequently decreased again from a maximum of 2 microM (148 microg L(-1)) to 0.3 microM (22 microg L(-1)), consistent with formation of sulfide mineral phases or increased arsenic sorption at higher pH values. Disequilibrium processes may also explain this second arsenic peak. The maximum iron and arsenic concentrations observed in the lab represent conditions most equivalent to the in situ conditions. These findings indicate that enhanced sulfate reduction merits further study as a potential in situ groundwater arsenic remediation strategy at landfills and other sites with elevated arsenic in reducing groundwater.


Assuntos
Arsênio/química , Sulfatos/química , Poluentes Químicos da Água/química , Abastecimento de Água , Acetatos/metabolismo , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Eliminação de Resíduos , Sulfatos/metabolismo , Sulfetos/metabolismo , Purificação da Água/métodos
9.
J Contam Hydrol ; 76(3-4): 295-314, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15683885

RESUMO

Twenty-eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7-cm-long columns of intact sediment or repacked sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of columns to examine the effect of cell morphology and cell surface properties on bacterial transport. The effects of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also investigated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide-coated columns, but only in the suboxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide-coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect appears to be profound for weakly and strongly charged hydrophilic bacteria and may contribute to differences in observations between laboratory experiments versus field-scale investigations particularly if the groundwater pH remains subneutral and Fe oxyhydroxide phases exist. These observation validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.


Assuntos
Bacillus , Bromo/química , Comamonas , Microbiologia da Água , Adsorção , Alumínio/análise , Bacillus/química , Comamonas/química , Sedimentos Geológicos , Ferro/análise , Modelos Teóricos , Tamanho da Partícula , Porosidade , Eletricidade Estática , Água/química , Movimentos da Água , Poluentes da Água
10.
J Microbiol Methods ; 47(2): 219-31, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11576686

RESUMO

The purpose of this study was to compare in a laboratory experiment, a suite of methods developed to track viable bacteria during field transport experiments. The criteria for development and selection of these methods included: (1) the ability to track bacteria within the environment from which they were isolated; (2) the lack of any effect upon the viability or the transport characteristics of the strain; (3) low detection limits; (4) a quantification range that covered several orders of magnitude; and (5) an analytical cost and turnover time commensurate with the analysis of several thousands of samples in a few months. The approaches developed included: enumeration of bacteria labeled with a vital fluorescent stain (CFDA/SE) using microplate spectrofluorometry, flow cytometry, and ferrographic (immunomagnetic) capture; enumeration of highly (13)C-enriched bacteria using combustion-IRMS; and quantitative PCR. These methods were compared to direct microscopic enumeration and plate counts during a bacterial transport experiment performed in an intact sediment core and designed to simulate the field experiment. Four of the seven methods had equivalent recoveries for the breakthrough of a pulse of bacteria eluting from a 50-cm long sediment core, and all of the methods detected the arrival of cells in the effluent prior to the conservative tracer. Combustion IRMS and ferrographic enumeration had the lowest quantification limits (approximately 2 to 20 cells/ml), whereas microplate spectrofluorometry had the highest quantification limit (approximately 10(5) cells/ml). These methods have the potential for numerous applications beyond tracking bacteria injected into the subsurface.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/citologia , Bactérias/genética , Técnicas Bacteriológicas/métodos , Divisão Celular , Meio Ambiente , Citometria de Fluxo/métodos , Fluoresceínas , Corantes Fluorescentes , Espectrometria de Massas/métodos , Reação em Cadeia da Polimerase/métodos , Espectrometria de Fluorescência/métodos , Succinimidas
11.
Environ Sci Technol ; 35(1): 182-91, 2001 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11352009

RESUMO

The first results from an innovative bacterial tracking technique, ferrographic capture, applied to bacterial transport in groundwater are reported in this paper. Ferrographic capture was used to analyze samples during an October 1999 bacterial injection experiment at the Narrow Channel focus area of the South Oyster site, VA. Data obtained using this method showed that the timing of bacterial breakthrough was controlled by physical (hydraulic conductivity) heterogeneity in the vertical dimension as opposed to variation in sedimentsurface or aqueous chemical properties. Ferrographic tracking yielded results that compared well with results from other tracking techniques over a concentration range of 8 orders of magnitude and provided a low detection limit relative to most other bacterial tracking techniques. The low quantitation limit of this method (approximately 20 cells/mL) allowed observation of transport of an adhesion-deficient bacterium over distances greater than 20 m in the fine sand aquifer underlying this site.


Assuntos
Bactérias/isolamento & purificação , Microbiologia da Água , Bactérias/genética , Bactérias/metabolismo , Técnicas Bacteriológicas , Biodegradação Ambiental , Contagem de Colônia Microbiana/métodos , Comamonas/genética , Comamonas/isolamento & purificação , Comamonas/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Compostos Férricos , Magnetismo , Reação em Cadeia da Polimerase , Virginia , Poluentes Químicos da Água/metabolismo
12.
Appl Environ Microbiol ; 66(10): 4486-96, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11010903

RESUMO

Previous bacterial transport studies have utilized fluorophores which have been shown to adversely affect the physiology of stained cells. This research was undertaken to identify alternative fluorescent stains that do not adversely affect the transport or viability of bacteria. Initial work was performed with a groundwater isolate, Comamonas sp. strain DA001. Potential compounds were first screened to determine staining efficiencies and adverse side effects. 5-(And 6-)-carboxyfluorescein diacetate, succinimidyl ester (CFDA/SE) efficiently stained DA001 without causing undesirable effects on cell adhesion or viability. Members of many other gram-negative and gram-positive bacterial genera were also effectively stained with CFDA/SE. More than 95% of CFDA/SE-stained Comamonas sp. strain DA001 cells incubated in artificial groundwater (under no-growth conditions) remained fluorescent for at least 28 days as determined by epifluorescent microscopy and flow cytometry. No differences in the survival and culturability of CFDA/SE-stained and unstained DA001 cells in groundwater or saturated sediment microcosms were detected. The bright, yellow-green cells were readily distinguished from autofluorescing sediment particles by epifluorescence microscopy. A high throughput method using microplate spectrofluorometry was developed, which had a detection limit of mid-10(5) CFDA-stained cells/ml; the detection limit for flow cytometry was on the order of 1,000 cells/ml. The results of laboratory-scale bacterial transport experiments performed with intact sediment cores and nondividing DA001 cells revealed good agreement between the aqueous cell concentrations determined by the microplate assay and those determined by other enumeration methods. This research indicates that CFDA/SE is very efficient for labeling cells for bacterial transport experiments and that it may be useful for other microbial ecology research as well.


Assuntos
Comamonas/fisiologia , Comamonas/citologia , Comamonas/isolamento & purificação , Fluoresceínas , Corantes Fluorescentes , Bactérias Gram-Negativas/citologia , Bactérias Gram-Positivas/citologia , Microscopia de Fluorescência/métodos , Succinimidas , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA