Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 827, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068191

RESUMO

Anthropogenic and climatic changes affect the water and energy cycles in High Mountain Asia (HMA), home to over two billion people and the largest reservoirs of freshwater outside the polar zone. Despite their significant importance for water management, consistent and reliable estimates of water storage and fluxes over the region are lacking because of the high uncertainties associated with the estimates of atmospheric conditions and human management. Here, we relied on multivariate data assimilation (MVDA) to provide estimates of energy and water storage and fluxes that reflect the processes occurring in the region such as greening and irrigation-driven groundwater depletion. We developed and employed an ensemble precipitation estimate by blending different precipitation products thereby reducing the uncertainties and inconsistencies associated with precipitation in HMA. Then, we assimilated five variables that capture the changes in hydrology in response to climate change and anthropogenic activities. Overall, our results have shown that MVDA has allowed a better representation of the land surface processes including greening and irrigation-driven groundwater depletion in HMA.

2.
Sci Rep ; 12(1): 16163, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171251

RESUMO

Human and climate induced land surface changes resulting from irrigation, snow cover decreases, and greening impact the surface albedo over High Mountain Asia (HMA). Here we use a partial information decomposition approach and remote sensing data to quantify the effects of the changes in leaf area index, soil moisture, and snow cover on the surface albedo in HMA, home to over a billion people, from 2003 to 2020. The study establishes strong evidence of anthropogenic agricultural water use over irrigated lands (e.g., Ganges-Brahmaputra) which causes the highest surface albedo decreases (≤ 1%/year). Greening and decreased snow cover from warming also drive changes in visible and near-infrared surface albedo in different areas of HMA. The significant role of irrigation and greening in influencing albedo suggests the potential of a positive feedback cycle where albedo decreases lead to increased evaporative demand and increased stress on water resources.


Assuntos
Mudança Climática , Neve , Ásia , Humanos , Solo , Água
3.
PLoS One ; 16(3): e0247907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760812

RESUMO

There is a growing understanding of the role that bedrock weathering can play as a source of nitrogen (N) to soils, groundwater and river systems. The significance is particularly apparent in mountainous environments where weathering fluxes can be large. However, our understanding of the relative contributions of rock-derived, or geogenic, N to the total N supply of mountainous watersheds remains poorly understood. In this study, we develop the High-Altitude Nitrogen Suite of Models (HAN-SoMo), a watershed-scale ensemble of process-based models to quantify the relative sources, transformations, and sinks of geogenic and atmospheric N through a mountain watershed. Our study is based in the East River Watershed (ERW) in the Upper Colorado River Basin. The East River is a near-pristine headwater watershed underlain primarily by an N-rich Mancos Shale bedrock, enabling the timing and magnitude of geogenic and atmospheric contributions to watershed scale dissolved N-exports to be quantified. Several calibration scenarios were developed to explore equifinality using >1600 N concentration measurements from streams, groundwater, and vadose zone samples collected over the course of four years across the watershed. When accounting for recycling of N through plant litter turnover, rock weathering accounts for approximately 12% of the annual dissolved N sources to the watershed in the most probable calibration scenario (0-31% in other scenarios), and 21% (0-44% in other scenarios) when considering only "new" N sources (i.e. geogenic and atmospheric). On an annual scale, instream dissolved N elimination, plant turnover (including cattle grazing) and atmospheric deposition are the most important controls on N cycling.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Poluentes Químicos da Água/análise , Colorado
5.
J Contam Hydrol ; 212: 55-64, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28651901

RESUMO

We present a combined experimental and numerical modeling study that addresses two principal questions: (i) is any particular Eulerian-based method used to solve the classical advection-dispersion equation (ADE) clearly superior (relative to the others), in terms of yielding solutions that reproduce BTCs of the kind that are typically sampled at the outlet of a laboratory cell? and (ii) in the presence of matches of comparable quality against such BTCs, do any of these methods render different (or similar) numerical BTCs at locations within the domain? To address these questions, we obtained measurements from carefully controlled laboratory experiments, and employ them as a reference against which numerical results are benchmarked and compared. The experiments measure solute transport breakthrough curves (BTCs) through a square domain containing various configurations of coarse, medium, and fine quartz sand. The approaches to solve the ADE involve Eulerian-Lagrangian and Eulerian (finite volume, finite elements, mixed and discontinuous finite elements) numerical methods. Model calibration is not examined; permeability and porosity of each sand were determined previously through separate, standard laboratory tests, while dispersivities are assigned values proportional to mean grain size. We find that the spatial discretization of the flow field is of critical importance, due to the non-uniformity of the domain. Although simulated BTCs at the system outlet are observed to be very similar for these various numerical methods, computed local (point-wise, inside the domain) BTCs can be very different. We find that none of the numerical methods is able to fully reproduce the measured BTCs. The impact of model parameter uncertainty on the calculated BTCs is characterized through a set of numerical Monte Carlo simulations; in cases where the impact is significant, assessment of simulation matches to the experimental data can be ambiguous.


Assuntos
Hidrodinâmica , Modelos Teóricos , Benchmarking , Porosidade , Soluções , Incerteza , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA