Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(2): e13278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040458

RESUMO

Toxoplasma gondii infects virtually any nucleated cell and resides inside a non-phagocytic vacuole surrounded by a parasitophorous vacuolar membrane (PVM). Pivotal to the restriction of T. gondii dissemination upon infection in murine cells is the recruitment of immunity regulated GTPases (IRGs) and guanylate binding proteins (GBPs) to the PVM that leads to pathogen elimination. The virulent T. gondii type I RH strain secretes a handful of effectors including the dense granule protein GRA7, the serine-threonine kinases ROP17 and ROP18, and a pseudo-kinase ROP5, that synergistically inhibit the recruitment of IRGs to the PVM. Here, we characterise GRA60, a novel dense granule effector, which localises to the vacuolar space and PVM and contributes to virulence of RH in mice, suggesting a role in the subversion of host cell defence mechanisms. Members of the host cell IRG defence system Irgb10 and Irga6 are recruited to the PVM of RH parasites lacking GRA60 as observed previously for the avirulent RHΔrop5 mutant, with RH preventing such recruitment. Deletion of GRA60 in RHΔrop5 leads to a recruitment of IRGs comparable to the single knockouts. GRA60 therefore represents a novel parasite effector conferring resistance to IRGs in type I parasites, and found associated to ROP18, a member of the virulence complex.


Assuntos
Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Toxoplasma/imunologia , Toxoplasma/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , DNA de Protozoário , Fibroblastos/parasitologia , Prepúcio do Pênis/parasitologia , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Humanos , Imunidade , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Toxoplasma/genética , Vacúolos/metabolismo , Virulência
2.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581149

RESUMO

The RBC storage lesion is a multiparametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature. We show dramatic alterations in several properties of therapeutic blood units stored at 4°C after warming them to normal body temperature (37°C), as well as febrile temperature (40°C). In particular, the intracellular content and redox state of NADP(H) were directly affected by post-storage incubation at 37°C, as well as by pro-oxidant storage conditions. Modulation of the NADPH-producing pentose phosphate pathway, but not the prevention of hemoglobin autoxidation by conversion of oxyhemoglobin to carboxyhemoglobin, provided protection against storage-induced alterations in RBCs, demonstrating the central role of NADPH in mitigating increased susceptibility of stored RBCs to oxidative stress. We propose that assessing RBC oxidative status after restoration of body temperature constitutes a sensitive method for detecting storage-related alterations that has the potential to improve the quality of stored RBCs for transfusion.


Assuntos
Eritrócitos/metabolismo , Temperatura Alta , NADP/metabolismo , Estresse Oxidativo , Adulto , Feminino , Humanos , Inosina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Ácido Pirúvico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA