Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 2(9): e1600807, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704046

RESUMO

The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1-x K x )Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn , we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system.


Assuntos
Compostos de Ferro/química , Fenômenos Físicos , Supercondutividade , Anisotropia , Temperatura Alta , Magnetismo/métodos , Fônons
2.
Phys Rev Lett ; 114(15): 156803, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933329

RESUMO

A Fermi liquid with spin-orbit coupling (SOC) is expected to support a new set of collective modes: oscillations of magnetization in the absence of the magnetic field. We show that these modes are damped by the electron-electron interaction even in the limit of an infinitely long wavelength (q=0). The linewidth of the collective mode is on the order of Δ¯2/E(F), where Δ¯ is a characteristic spin-orbit energy splitting and E(F) is the Fermi energy. Such damping is in stark contrast to known damping mechanisms of both charge and spin collective modes in the absence of SOC, all of which disappear at q=0, and arises because none of the components of total spin is conserved in the presence of SOC.

3.
Phys Rev Lett ; 111(5): 057001, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952431

RESUMO

Recent experiments on two iron-pnictide families suggest the existence of a single quantum phase transition inside the superconducting dome despite the fact that two separate transition lines--magnetic and nematic-cross the superconducting dome at T(c). Here we argue that these two observations are actually consistent. We show, using a microscopic model, that each order coexists with superconductivity for a wide range of parameters, and both transition lines continue into the superconducting dome below T(c). However, at some T(merge)

4.
Phys Rev Lett ; 110(14): 146602, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167019

RESUMO

We investigate the transport properties of itinerant electrons interacting with a background of localized spins in a correlated paramagnetic phase of the pyrochlore lattice. We find a residual resistivity at zero temperature due to the scattering of electrons by the static dipolar spin-spin correlation that characterizes the metallic Coulomb phase. As temperature increases, thermally excited topological defects, also known as magnetic monopoles, reduce the spin correlation, hence suppressing electron scattering. Combined with the usual scattering processes in metals at higher temperatures, this mechanism yields a nonmonotonic resistivity, displaying a minimum at temperature scales associated with the magnetic monopole excitation energy. Our calculations agree quantitatively with resistivity measurements in Nd(2)Ir(2)O(7) and Pr(2)Ir(2)O(7), shedding light on the origin of the resistivity minimum observed in metallic spin-ice compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA