Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 249: 118326, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325784

RESUMO

Activated carbon (AC) based adsorbents derived from waste sludge were utilized to remediate mixed contaminants in wastewater as an integrated waste-to-resource approach promoting a paradigm shift in management of refuse sludge and wastewater. This review specifically focuses on the remediation of constituents of landfill leachate by sludge-based activated carbon (SBAC). The adsorption effectiveness of SBAC for the exclusion of leachate characters including heavy metals, phenols, dyes, phosphates, and phosphorus were explored with regard to modifiers such as pH, temperature, properties of the adsorbent including functional groups, initial doses of absorbent and adsorbate, and duration of exposure to note the impact of each parameter on the efficiency of adsorption of the sludge adsorbent. Through the works of various researchers, it was noted that the properties of the adsorbent, pH and temperature impact the working of SBACs. The pH of the adsorbent by influencing the functional groups. Temperature was expected to have a paramount effect on the adsorption efficiency of the SBACs. The importance of the regeneration and recycling of the adsorbents as well as their leachability is highlighted. Sludge based activated carbon is recommended as a timely, resource-efficient, and sustainable approach for the remediation of wastewater.


Assuntos
Carvão Vegetal , Esgotos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Esgotos/química , Carvão Vegetal/química , Adsorção , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Concentração de Íons de Hidrogênio , Temperatura , Purificação da Água/métodos
2.
Chemosphere ; 304: 135236, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35688204

RESUMO

The development of polymeric membranes from polymers such as polystyrene (PS), polyvinylchloride (PVC), and their associated family has brought great momentum to the environmental remediation universe, mainly due to their surprisingly diverse and multi-purpose nature. Their usage has surged 20 times in the last half-century and is likely to double again in the coming 20 years. As a result, the polymeric materials economy and commercialization of research become increasingly important as a possible option for a country to boost prosperity while decreasing its reliance on limited raw resources and mitigating negative externalities. This transformation demands a systematic strategy, which involves progress beyond improving the existing models and building new avenues for collaboration. In this work, a sophisticated system, i.e., product space model (PSM), has been presented, explicitly appraising the opportunity space for United Kingdom, Italy, Poland, India, Canada, Indonesia, Brazil, Saudi Arabia, Russia and Colombia for their potential future industrialization and commercialization of polymeric membranes for environmental remediation. The results revealed that UK, Italy, Poland and India are at advantageous positions owing to their close proximity of (distance<2) and their placement in Parsimonious policy, which is the most desired quadrant of Policy Map of PSM, Canada and Indonesia have medium level opportunities, while Russia and Saudi Arabia have opportunities with more challenges to fully exploit the unexploited polymers products in terms of membranes for environmental remediation and prove favorable for export diversification, sustainable economic growth, and commercialization.


Assuntos
Recuperação e Remediação Ambiental , Canadá , Desenvolvimento Econômico , Polímeros , Simulação de Ambiente Espacial
3.
Environ Res ; 186: 109596, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361527

RESUMO

Biochar production from invasive species biomass discarded as waste was studied in a fixed bed reactor pyrolysis system under different temperature conditions for value-added applications. Prior to pyrolysis, the biomass feedstock was characterized by proximate, ultimate, and heating value analyses, while the biomass decomposition behavior was examined by thermogravimetric analysis. The heating values of the feedstock biomass ranged from 18.65 to 20.65 MJ/kg, whereas the volatile matter, fixed carbon, and ash content were 61.54-72.04 wt %, 19.27-26.61 wt % and 1.51-1.86 wt %, respectively. The elemental composition of carbon, hydrogen, and oxygen in the samples was reported to be in the range of 47.41-48.47 wt %, 5.50-5.88 wt % and 46.10-45.18 wt %, respectively, while the nitrogen and sulphur content in the biomass samples were at very low concentrations, making it more useful for valorization from environmental aspects. The biochar yields were reported in the range of 45.36-58.35 wt %, 28.63-44.38 wt % and 22.68-29.42 wt % at a pyrolysis temperature of 400 °C, 500 °C, and 600 °C, respectively. The biochars were characterized from ultimate analysis, heating value, energy densification ratio, energy yield, pH, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy and energy dispersive X-ray spectrometry (SEM and EDX), to evaluate their potential for value-added applications. The carbon content, heating value, energy densification ratio, and the porosity of the biochars improved with the increase in pyrolysis temperature, while the energy yield, hydrogen, oxygen, and nitrogen content of the biochars decreased. This study revealed the potential of the valorization of underutilized discarded biomass of invasive species via a pyrolysis process to produce biochar for value-added applications.


Assuntos
Carvão Vegetal , Espécies Introduzidas , Biomassa , Carbono , Temperatura
4.
Polymers (Basel) ; 11(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557811

RESUMO

In recent years, there has been considerable interest in the use of natural fibers as potential reinforcing fillers in polymer composites despite their hydrophilicity, which limits their widespread commercial application. The present study explored the fabrication of nanocomposites by melt mixing, using an internal mixer followed by a compression molding technique, and incorporating rice husk (RH) as a renewable natural filler, montmorillonite (MMT) nanoclay as water-resistant reinforcing nanoparticles, and polypropylene-grafted maleic anhydride (PP-g-MAH) as a compatibilizing agent. To correlate the effect of MMT delamination and MMT/RH dispersion in the composites, the mechanical and thermal properties of the composites were studied. XRD analysis revealed delamination of MMT platelets due to an increase in their interlayer spacing, and SEM micrographs indicated improved dispersion of the filler(s) from the use of compatibilizers. The mechanical properties were improved by the incorporation of MMT into the PP/RH system and the reinforcing effect was remarkable as a result of the use of compatibilizing agent. Prolonged water exposure of the prepared samples decreased their tensile and flexural properties. Interestingly, the maximum decrease was observed for PP/RH composites and the minimum was for MMT-reinforced and PP-g-MAH-compatibilized PP/RH composites. DSC results revealed an increase in crystallinity with the addition of filler(s), while the melting and crystallization temperatures remained unaltered. TGA revealed that MMT addition and its delamination in the composite systems improved the thermal stability of the developed nanocomposites. Overall, we conclude that MMT nanoclay is an effective water-resistant reinforcing nanoparticle that enhances the durability, mechanical properties, and thermal stability of composites.

5.
Polymers (Basel) ; 10(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30961195

RESUMO

This work aims to investigate the effect of hybrid filler concentration on the thermal stability of low-density polyethylene (LDPE) matrices. LDPE-based composite films were synthesized by melt mixing, followed by compression molding, to study the influence of titanium oxide nanoparticles (TONPs) and/or multi-walled carbon nanotubes (CNTs) on the thermal properties of LDPE matrices. Fourier transform infrared (FTIR) spectroscopy confirmed the slight increase in the band intensities after TONP addition and a remarkable surge after the incorporation of CNTs. The value of crystallization temperature (Tc) was not modified after incorporating TONPs, while an enhancement was observed after adding the hybrid fillers. The melting temperature (Tm) was not changed after introducing the CNTs and CNT/TONP hybrid fillers. The percentage crystallinity (Xc %) was increased by 4% and 6%, after incorporating 1 wt % and 3 wt % CNTs, respectively. The TONP incorporation did not modify the Xc %. Moreover, thermal gravimetric analysis (TGA) thermograms confirmed the increased thermal stability after introducing CNTs and hybrid fillers compared to TONP incorporation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA