Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38454775

RESUMO

Immunotherapy with immune checkpoint inhibitors (ICIs) is a promising therapeutic schedule in advanced solid cancers. In this review, clinical trials from highly reputable journals are interpreted for safety and efficacy evaluation of the common anti-programmed death-1 (PD-1) inhibitor nivolumab and/or the most known anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) inhibitor ipilimumab in advanced melanoma. Current progress in the field of melanoma immunotherapy is the focus of this review. Solo nivolumab and combo nivolumab-ipilimumab show higher responses compared to solo ipilimumab or chemotherapy. BRAF and programmed death-ligand 1 (PDL1) expression states are seemingly not reliable biomarkers of response to ICI therapy in melanoma. Solo ipilimumab and particularly a combination of nivolumab-ipilimumab show higher adverse events (AEs) compared with solo nivolumab or chemotherapy. Besides, ICI therapy is safer in mucosal melanoma, but its efficacy is higher in the cutaneous subtype. Patients receiving combination regimens who are experiencing serious AEs can discontinue such regimens until recovery and still maintain clinical benefits. To conclude, combo nivolumab-ipilimumab represents more therapeutic advantages compared with solo nivolumab or ipilimumab, but the rate of AEs is higher for combination regimens. Resistance to combo nivolumab-ipilimumab demands the application of novel approaches to go with ICIs in melanoma immunotherapy. Immunogenic agents, alternative immune checkpoints, vaccination, oncolytic viruses, extracellular vesicles (EVs) and fecal microbiome transplantation (FMT) are novel strategies in patients developing ICI resistance.

2.
Curr Med Chem ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38251694

RESUMO

Cancer metastasis is the deadliest event in tumorigenesis. Despite extensive research, there are still unsolved challenges regarding early metastasis detection and targeting strategies. Extracellular vesicles (EVs) and their impact on tumorigenic-related events are in the eye of current investigations. EVs represent a plethora of biomarkers and information, and they are considered key determinants in tumor progression and for tumor prognosis and monitoring. EVs are one of the key mediators for inter-cellular communications between tumor cells and their nearby stroma. They are involved in different steps of metastasis from invasion toward formation of pre-metastatic niches (PMNs), and final growth and colonization of tumor cells in desired organ/s of the target. Membrane components of EVs and their cargo can be traced for the identification of tumor metastasis, and their targeting is a promising strategy in cancer therapy. In this review, we aimed to discuss the current understanding of EV-based metastatic predilection in cancer, providing updated information about EV involvement in different metastatic steps and suggesting some strategies to hamper this devastating condition.

3.
Clin Chim Acta ; 552: 117690, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056548

RESUMO

Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.


Assuntos
Biomarcadores Tumorais , Células Neoplásicas Circulantes , Humanos , Biópsia Líquida/métodos , Prognóstico , Plaquetas/patologia , Células Neoplásicas Circulantes/patologia , Microambiente Tumoral
4.
Clin Chim Acta ; 553: 117674, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007059

RESUMO

Liquid biopsy refers to a set of pathological samples retrieved from non-solid sources, such as blood, cerebrospinal fluid, urine, and saliva through non-invasive or minimally invasive approaches. In the recent decades, an increasing number of studies have focused on clinical applications and improving technological investigation of liquid biopsy biosources for diagnostic goals particularly in cancer. Materials extracted from these sources and used for medical evaluations include cells like circulating tumor cells (CTCs), tumor-educated platelets (TEPs), cell-free nucleic acids released by cells, such as circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and exosomes. Playing significant roles in the pathogenesis of human malignancies, analysis of these sources can provide easier access to genetic and transcriptomic information of the cancer tissue even better than the conventional tissue biopsy. Notably, they can represent the inter- and intra-tumoral heterogeneity and accordingly, liquid biopsies demonstrate strengths for improving diagnosis in early detection and screening, monitoring and follow-up after therapies, and personalization of therapeutical strategies in various types of human malignancies. In this review, we aim to discuss the roles, functions, and analysis approaches of liquid biopsy sources and their clinical implications in human malignancies with a focus on colorectal cancer.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Biópsia Líquida , Células Neoplásicas Circulantes/patologia , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais
5.
Heliyon ; 9(12): e23171, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144305

RESUMO

Tumor-mediated bypass of immune checkpoint inhibitor (ICI) therapy with anti-programmed death-1 (PD-1), anti-programmed death-ligand 1 (PD-L1, also called B7-H1 or CD274) or anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a challenge of current years in the area of cancer immunotherapy. Alternative immune checkpoints (AICs) are molecules beyond the common PD-1, PD-L1 or CTLA-4, and are upregulated in patients who show low/no ICI responses. These are members of B7 family including B7-H2 (ICOS-L), B7-H3 (CD276), B7-H4 (B7x), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7-H6, HHLA2 (B7-H5/B7-H7) and catabolic enzymes like indoleamine 2,3-dioxygenase 1 (IDO1), and others that are also contributed to the regulation of tumor immune microenvironment (TIME). There is also strong evidence supporting the implication of AICs in regulation of cancer stemness and expanding the population of cancer stem cells (CSCs). CSCs display immunoregulatory capacity and represent multiple immune checkpoints either on their surface or inside. Besides, they are active promoters of resistance to the common ICIs. The aim of this review is to investigate interrelations between AICs with stemness and differentiation profile of cancer. The key message of this paper is that targeted checkpoints can be selected based on their impact on CSCs along with their effect on immune cells. Studies published so far mainly focused on immune cells as a target for anti-checkpoints. Ex vivo engineering of extracellular vesicles (EVs) equipped with CSC-targeted anti-checkpoint antibodies is without a doubt a key therapeutic target that can be under consideration in future research.

6.
Cell Death Discov ; 9(1): 423, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001121

RESUMO

MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) with a short length of 19-22 nucleotides. miRNAs are posttranscriptional regulators of gene expression involved in various biological processes like cell growth, apoptosis, and angiogenesis. miR-184 is a well-studied miRNA, for which most studies report its downregulation in cancer cells and tissues and experiments support its role as a tumor suppressor inhibiting malignant biological behaviors of cancer cells in vitro and in vivo. To exert its functions, miR-184 affects some signaling pathways involved in tumorigenesis like Wnt and ß-catenin, and AKT/mTORC1 pathway, oncogenic factors (e.g., c-Myc) or apoptotic proteins, such as Bcl-2. Interestingly, clinical investigations have shown miR-184 with good performance as a prognostic/diagnostic biomarker for various cancers. Additionally, exogenous miR-184 in cell and xenograft animal studies suggest it as a therapeutic anticancer target. In this review, we outline the studies that evaluated the roles of miR-184 in tumorigenesis as well as its clinical significance.

7.
Cancer Cell Int ; 23(1): 271, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951913

RESUMO

Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.

8.
Neuroscience ; 535: 1-12, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890609

RESUMO

Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1ß (IL-1ß), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.


Assuntos
Melanoma , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Geleia de Wharton , Animais , Ratos , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Melanoma/metabolismo , Modelos Teóricos , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/metabolismo , Geleia de Wharton/metabolismo
9.
Int Immunopharmacol ; 122: 110648, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37459782

RESUMO

Immune checkpoint inhibitor (ICI) therapy suffers from tumor resistance and relapse in majority of patients due to the suppressive tumor immune microenvironment (TIME). Advances in the field have brought about development of fusion proteins able to target two signaling simultaneously and to exert maximal anti-cancer immunity. Bispecific inhibitors of transforming growth factor (TGF)-ß signaling and programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) are developed to reduce the rate of relapse and to achieve durable anti-cancer therapy. TGF-ß is well-known for its immunosuppressive activity, and it takes critical roles in promotion of all tumor hallmarks. Bispecific anti-PD-(L)1/TGF-ß inhibitors reinvigorate effector activity of CD8+ T and natural killer (NK) cells, hamper regulatory T cell (Treg) expansion, and increase the density of anti-tumor type 1 macrophages (M1). Responses to the bispecific approach are higher compared with solo anti-PD-(L)1 or TGF-ß targeted therapy, and are seemingly more pronounced in human papillomavirus (HPV)+ patients. High expression of PD-L1 or immune-excluded phenotype in a tumor can also be markers of better response to the bispecific strategy. Besides, anti-PD-(L)1/TGF-ß inhibitor therapy can be used safely with other therapeutic modalities including vaccination, radiation and chemotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Fator de Crescimento Transformador beta , Neoplasias/tratamento farmacológico , Transdução de Sinais , Imunoterapia , Microambiente Tumoral
10.
Int J Biol Macromol ; 250: 125863, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467828

RESUMO

MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.

11.
Drug Deliv Transl Res ; 13(11): 2790-2806, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37261603

RESUMO

Extracellular vesicles (EVs) are a group of nanoscale membrane-bound organelles including exosomes, microvesicles (MVs), membrane particles, and apoptotic bodies, which are released from almost all eukaryotic cells. Owing to their ingredients, EVs can be employed as biomarkers for human diseases. Interestingly, EVs show favorable features as candidates for targeted drug delivery and thus, they are suggested as ideal drug carriers as well as good vaccines for various human diseases including cancer. Among various drugs loaded in EVs for targeted drug delivery, immune checkpoint inhibitors (ICIs), including antibodies against programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), have attracted an increasing attention for cancer researchers and clinicians. Animal and clinical studies have shown combination of EVs and immunotherapy antibodies to improve the efficacy and reduce possible side effects in systemic administration of ICIs. In this review, we discuss the EVs and their significance in drug delivery with a focus on cancer immunotherapy agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Animais , Humanos , Vesículas Extracelulares/metabolismo , Imunoterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Portadores de Fármacos/uso terapêutico
12.
Pathol Res Pract ; 247: 154583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267723

RESUMO

Combination therapy of solid tumors with immune checkpoint inhibitors (ICIs) is a promising and rapidly evolving area of clinical research. Combo nivolumab-ipilimumab therapy has demonstrated potent efficacy in recent years, and PD-L1 expression profile has shown to play a key role in determining the most optimal immunotherapeutic regimen in advanced cancer patients. Here, the focus is over the impact of PD-L1 on combo nivolumab-ipilimumab in advanced solid cancer patients. Interpretations of this review indicate that patient responses to combo nivolumab-ipilimumab can be affected from different levels of PD-L1 expression states. A point required attention is the variations in responses among diverse cancer types or between different doses of the immunotherapy drugs. In general, higher rates of responses are seen with higher PD-L1 expression levels in many cancer types. This, however, is not coincided with survival of patients. Taken all into consideration, it could be asserted that considering PD-L1 as a solo biomarker may not be reliable for predicting clinical efficacy of combo nivolumab-ipilimumab. Thus, a search for other biomarkers or combination of PD-L1 with other factors may be considered for predicting patient responses.


Assuntos
Neoplasias , Nivolumabe , Humanos , Antígeno CTLA-4 , Nivolumabe/uso terapêutico , Ipilimumab/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias/tratamento farmacológico
13.
Diabetes Res Clin Pract ; 201: 110739, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270071

RESUMO

Humans have a complicated symbiotic relationship with their gut microbiome, which is postulated to impact host health and disease broadly. Epigenetic alterations allow host cells to regulate gene expression without altering the DNA sequence. The gut microbiome, offering environmental hints, can influence responses to stimuli by host cells with modifications on their epigenome and gene expression. Recent increasing data suggest that regulatory non-coding RNAs (miRNAs, circular RNAs, and long lncRNA) may affect host-microbe interactions. These RNAs have been suggested as potential host response biomarkers in microbiome-associated disorders, including diabetes and cancer. This article reviews the current understanding of the interplay between gut microbiota and non-coding RNA, including lncRNA, miRNA, and circular RNA. This can lead to a profound understanding of human disease and influence therapy. Furthermore, microbiome engineering as a mainstream strategy for improving human health has been discussed and confirms the hypothesis about a direct cross-talk between microbiome composition and non-coding RNA.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Microbiota , RNA Longo não Codificante , Humanos , Microbioma Gastrointestinal/genética , RNA Longo não Codificante/genética
14.
Heliyon ; 9(6): e16848, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303564

RESUMO

Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-ß-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3ß-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERß), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.

15.
Biomed Pharmacother ; 163: 114824, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141735

RESUMO

CD8+ T cells are the front-line defensive cells against cancer. Reduced infiltration and effector function of CD8+ T cells occurs in cancer and is contributed to defective immunity and immunotherapy resistance. Exclusion and exhaustion of CD8+ T cells are the two key factors associated with reduced durability of immune checkpoint inhibitor (ICI) therapy. Initially activated T cells upon exposure to chronic antigen stimulation or immunosuppressive tumor microenvironment (TME) acquire a hyporesponsive state that progressively lose their effector function. Thus, a key strategy in cancer immunotherapy is to look for factors contributed to defective CD8+ T cell infiltration and function. Targeting such factors can define a promising supplementary approach in patients receiving anti-programmed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) therapy. Recently, bispecific antibodies are developed against PD-(L)1 and a dominant factor within TME, representing higher safety profile and exerting more desired outcomes. The focus of this review is to discuss about promoters of deficient infiltration and effector function of CD8+ T cells and their addressing in cancer ICI therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Neoplasias/terapia , Microambiente Tumoral , Imunoterapia
16.
Biomed Pharmacother ; 162: 114646, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011483

RESUMO

Extending the durability of response is the current focus in cancer immunotherapy with immune checkpoint inhibitors (ICIs). However, factors like non-immunogenic tumor microenvironment (TME) along with aberrant angiogenesis and dysregulated metabolic systems are negative contributors. Hypoxia is a key TME condition and a critical promoter of tumor hallmarks. It acts on immune and non-immune cells within TME in order for promoting immune evasion and therapy resistance. Extreme hypoxia is a major promoter of resistance to the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor therapy. Hypoxia inducible factor-1 (HIF-1) acts as a key mediator of hypoxia and a critical promoter of resistance to the anti-PD-(L)1. Targeting hypoxia or HIF-1 can thus be an effective strategy for reinvigoration of cellular immunity against cancer. Among various strategies presented so far, the key focus is over vascular normalization, which is an approach highly effective for reducing the rate of hypoxia, increasing drug delivery into the tumor area, and boosting the efficacy of anti-PD-(L)1.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Hipóxia , Imunoterapia , Microambiente Tumoral
17.
Biomed Pharmacother ; 162: 114621, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004328

RESUMO

Immune checkpoint inhibitor (ICI) resistance demands for acquisition of novel strategies in order to broaden the therapeutic repertoire of advanced cancers. Bispecific antibodies can be utilized as an emerging therapeutic paradigm and a step forward in cancer immunotherapy. Synchronous inhibition of programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1) or cytotoxic T lymphocyte associated antigen-4 (CTLA-4), or with other agents can expand antibody selectivity and improve therapeutic window through tightening cell-to-cell bridge (a process called immunological synapse) within tumor immune microenvironment (TIME). There is evidence of higher potency of this co-targeting approach over combined single-agent monoclonal antibodies in reinvigorating anti-tumor immune responses, retarding tumor growth, and improving patient survival. In fact, immunological synapses formed by interactions of such bispecific agents with TIME cells directly mediate cytotoxicity against tumor cells, and durable anti-tumor immune responses are predictable after application of such agents. Besides, lower adverse events are reported for bispecific antibodies compared with individual checkpoint inhibitors. These are all indicative of the importance of exploiting novel bispecific approach as a replacement for conventional combo checkpoint inhibitor therapy particularly for tumors with immunosuppressive or cold immunity. Study in this area is still continued, and in the future more will be known about the importance of this bispecific approach in cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/efeitos adversos , Microambiente Tumoral
18.
Heliyon ; 9(3): e14566, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950599

RESUMO

Background: This review discusses the impact of mono or combination therapy of immune checkpoint inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC) patients, comparing clinical outcomes and safety. Cancer subtype, tumor mutational burden (TMB), programmed death-ligand 1 (PD-L1) expression state and T cell infiltration (TIL) density are considered for interpretations. Besides, current progresses in the field of immunotherapy are discussed. Results: Anti-PD-(L)1 is a safe and an effective strategy in patients with advanced/metastatic NSCLC. Clinical responses to nivolumab and pembrolizumab, in particular, are promising. The most desired clinical responses are for patients receiving combination of anti-PD-(L)1 or anti-PD-(L)1/anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) with chemotherapy (taxane and platinum). PD-L1 expression state (PD-L1 ≥ 50%), patient performance state (PS: 0-1 ECOG scale) and effector T cell (Teff) immune signature considerably affect ICI responses. Higher ICI responses are also expected in TMB high but EGFR-/ALK- cancer patients. In regard with safety profile, adverse events (AEs) related to anti-PD-(L)1 are lower compared with that for platinum-based and docetaxel therapy. Toripalimab is the safest among various immunotherapy drugs. Bispecific antibodies against anti-PD-(L)1 with dominant signaling or alternative checkpoints in tumor microenvironment (TME) is the current focus in immunotherapy of cancers like NSCLC. Besides, the contribution of extracellular vesicles (EVs) to immune escape and their implication in cancer diagnosis and therapy is on the eye of current investigations. Conclusion: Appropriate biomarker selection will improve therapy outcomes in ICI treated NSCLC patients, particularly in cases under combinatory ICI therapy. Application of bispecific antibodies and EV-based targeted therapy are effective novel strategies to improve therapeutic outcomes in cancer patients.

19.
Med Oncol ; 40(5): 128, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964452

RESUMO

Extracellular vesicles (EVs) are emerging as key mediators of cell-to-cell communications and signal transporters between tumor and stroma, and hypoxia is a critical characteristic of tumor microenvironment (TME) in solid cancers. Hypoxia stimulates tumor cells to generate and secrete more EVs, and the EVs shed from cancer transfer biological information to boost hypoxia and hypoxia inducible factor (HIF) functionality. Hypoxia alters EV secretome profile to carry pro-tumorigenic factors for promoting numerous tumor-related processes including increased cancer cell proliferation and survival, immune escape, aberrant angiogenesis, and invasion and metastasis. Exosomal hypoxia inducible factor (HIF)-1α is an essential driver of epithelial-mesenchymal transition (EMT) and stemness profile in cancer. Hypoxic cancer-derived EVs are also contributed to therapy resistance. In fact, EVs are messengers of hypoxic tolerance in cancer, which enable adaptation of tumor cells to changes occurring within TME for their further resistance and metastasis. Tracing EVs shed from hypoxic tumor cells into plasma provide important information about the genomic signature of cancer. In this review, we aimed to discuss about key tumorigenic events promoted by inter-connections between hypoxia and EVs, mainly exosomes, secreted into tumor area focusing on key hallmarks of cancer.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Secretoma , Neoplasias/patologia , Vesículas Extracelulares/patologia , Hipóxia , Comunicação Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia Celular , Microambiente Tumoral , Transição Epitelial-Mesenquimal
20.
Int Immunopharmacol ; 118: 110032, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933494

RESUMO

Metabolic alterations occur commonly in tumor cells as a way to adapt available energetic sources for their proliferation, survival and resistance. Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular enzyme catalyzing tryptophan degradation into kynurenine. IDO1 expression shows a rise in the stroma of many types of human cancers, and it provides a negative feedback mechanism for cancer evasion from immunosurveillance. Upregulation of IDO1 correlates with cancer aggression, poor prognosis and shortened patient survival. The increased activity of this endogenous checkpoint impairs effector T cell function, increases regulatory T cell (Treg) population and induces immune tolerance, so its inhibition potentiates anti-tumor immune responses and reshapes immunogenic state of tumor microenvironment (TME) presumably through normalizing effector T cell activity. A point is that the expression of this immunoregulatory marker is upregulated after immune checkpoint inhibitor (ICI) therapy, and that it has inducible effect on expression of other checkpoints. These are indicative of the importance of IDO1 as an attractive immunotherapeutic target and rationalizing combination of IDO1 inhibitors with ICI drugs in patients with advanced solid cancers. In this review, we aimed to discuss about the impact of IDO1 on tumor immune ecosystem, and the IDO1-mediated bypass of ICI therapy. The efficacy of IDO1 inhibitor therapy in combination with ICIs in advanced/metastatic solid tumors is also a focus of this paper.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias , Humanos , Ecossistema , Neoplasias/metabolismo , Triptofano/metabolismo , Cinurenina/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA