Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 8787-8799, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520348

RESUMO

Harnessing solar energy to produce value-added fuels and chemicals through photocatalysis techniques holds promise for establishing a sustainable and environmentally friendly energy economy. The intricate dynamics of photogenerated charge carriers lies at the core of the photocatalysis. The balance between charge trapping and band-edge recombination has a crucial influence on the activity of semiconductor photocatalysts. Consequently, the regulation of traps in photocatalysts becomes the key to optimizing their activities. Nevertheless, our comprehension of charge trapping, compared to that of well-studied charge recombination, remains somewhat limited. This limitation stems from the inherently heterogeneous nature of traps at both temporal and spatial scales, which renders the characterization of charge trapping a formidable challenge. Fortunately, recent advancements in both time-resolved spectroscopy and space-resolved microscopy have paved the way for considerable progress in the investigation and manipulation of charge trapping. In this Perspective, we focus on charge trapping in photocatalysts with the aim of establishing a direct link to their photocatalytic activities. To achieve this, we begin by elucidating the principles of advanced time-resolved spectroscopic techniques such as femtosecond time-resolved transient absorption spectroscopy and space-resolved microscopic methods, such as single-molecule fluorescence microscopy and surface photovoltage microscopy. Additionally, we provide an overview of noteworthy research endeavors dedicated to probing charge trapping using time- and space-resolved techniques. Our attention is then directed toward recent achievements in the manipulation of charge trapping in photocatalysts through defect engineering. Finally, we summarize this Perspective and discuss the future challenges and opportunities that lie ahead in the field.

2.
Adv Colloid Interface Sci ; 320: 103006, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37778249

RESUMO

While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.


Assuntos
Desinfecção , Propriedades de Superfície
3.
Phys Chem Chem Phys ; 25(13): 9152-9157, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36942738

RESUMO

Diaryldisulfides are known to undergo S-S bond cleavage upon one-electron reduction, which is called mesolysis of radical anions, to form the corresponding arylthiyl radical and anion. In this study, we prepared (4-cyanophenyl)(4'-methoxyphenyl)disulfide (MeOSSCN), and the mesolytic profiles were investigated by γ-ray and pulsed-electron radiolyses in 2-methyltetrahydrofuran. As a result of radiolysis of MeOSSCN at room and lower temperatures, the formation of the methoxythiyl radical was recognized upon mesolysis of the radical anion. This observation indicated that intramolecular electron transfer in the radical anion occurred, and the stepwise mechanism was operative after the attached electron occupied the antibonding σ*-orbital for promoting the S-S bond cleavage. According to the Arrhenius expression for the decay rates of the radical anion, the activation energy and frequency factor were determined. DFT calculations provided the bond dissociation energy and bond length for the S-S bond and charge distribution on the S atoms in the radical anion. The substituent effects on the mesolysis process are discussed.

4.
ChemSusChem ; 16(3): e202201496, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36254758

RESUMO

The production of water-dispersed graphene with low defects remains a challenge. The dry ball milling of graphite with additives produces edge-selectively functionalized graphene. However, the "inert" additives require a long milling time and cause inevitable in-plane defects. Here, the mechanochemical reaction of graphite with persulfate solved the above drawback and produced edge-selectively hydroxylated graphene (EHG) nanosheets through a 2 h ball-milling and a subsequent 0.5 h sonication. The mechanochemical cleavage of persulfate yielded SO4 ⋅- to spontaneously oxidize graphite to form the carbon radical cations selectively at edges, followed by hydroxylation with water of moisture. Because the O-O bond dissociation energy of persulfate is 20 % of the graphitic C-C bond, the rather low milling energy allowed the hydroxylation of graphite at edges with nearly no in-plane defects. The obtained EHG showed high water-dispersibility and excellent photothermal and electrochemical properties, thereby opening up a new door to fabricate graphene-based composites.

5.
Environ Sci Technol ; 56(8): 5161-5169, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35312317

RESUMO

Semiartificial photosynthesis shows great potential in solar energy conversion and environmental application. However, the rate-limiting step of photoelectron transfer at the biomaterial interface results in an unsatisfactory quantum yield (QY, typically lower than 3%). Here, an anthraquinone molecule, which has dual roles of microbial photosensitizer and capacitor, was demonstrated to negotiate the interface photoelectron transfer via decoupling the photochemical reaction with a microbial dark reaction. In a model system, anthraquinone-2-sulfonate (AQS)-photosensitized Thiobacillus denitrificans, a maximum QY of solar-to-nitrous oxide (N2O) of 96.2% was achieved, which is the highest among the semiartificial photosynthesis systems. Moreover, the conversion of nitrate into N2O was almost 100%, indicating the excellent selectivity in nitrate reduction. The capacitive property of AQS resulted in 82-89% of photoelectrons released at dark and enhanced 5.6-9.4 times the conversion of solar-to-N2O. Kinetics investigation revealed a zero-order- and first-order- reaction kinetics of N2O production in the dark (reductive AQS-mediated electron transfer) and under light (direct photoelectron transfer), respectively. This work is the first study to demonstrate the role of AQS in photosensitizing a microorganism and provides a simple and highly selective approach to produce N2O from nitrate-polluted wastewater and a strategy for the efficient conversion of solar-to-chemical by a semiartificial photosynthesis system.


Assuntos
Desnitrificação , Nitratos , Antraquinonas , Óxido Nitroso , Fármacos Fotossensibilizantes
6.
Nat Commun ; 13(1): 1400, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301319

RESUMO

Direct photocatalytic CO2 reduction from primary sources, such as flue gas and air, into fuels, is highly desired, but the thermodynamically favored O2 reduction almost completely impedes this process. Herein, we report on the efficacy of a composite photocatalyst prepared by hyper-crosslinking porphyrin-based polymers on hollow TiO2 surface and subsequent coordinating with Pd(II). Such composite exhibits high resistance against O2 inhibition, leading to 12% conversion yield of CO2 from air after 2-h UV-visible light irradiation. In contrast, the CO2 reduction over Pd/TiO2 without the polymer is severely inhibited by the presence of O2 ( ≥ 0.2 %). This study presents a feasible strategy, building Pd(II) sites into CO2-adsorptive polymers on hollow TiO2 surface, for realizing CO2 reduction with H2O in an aerobic environment by the high CO2/O2 adsorption selectivity of polymers and efficient charge separation for CO2 reduction and H2O oxidation on Pd(II) sites and hollow TiO2, respectively.

7.
Chem Soc Rev ; 50(17): 9741-9765, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34259262

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.


Assuntos
Antivirais/química , Materiais Revestidos Biocompatíveis , Desenho de Fármacos , COVID-19 , Humanos , Pandemias , SARS-CoV-2
8.
Chem Commun (Camb) ; 57(29): 3532-3542, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33729263

RESUMO

Photocatalysis holds great potential in alleviating the growing energy crisis and environmental issues. Defect engineering has been demonstrated as an effective method to modulate the electronic structure of semiconductor photocatalysts for enhanced visible light absorption. However, the effect of defects on photocatalytic activity is still under debate because of the elusive charge transfer process mediated by defects. In this feature article, we summarize our recent progress in unraveling the defect-mediated electron transfer of the widely studied TiO2 and polymeric carbon nitride photocatalysts by combining ultrafast time-resolved spectroscopy and theoretical simulations. We find that the photogenerated electron transfer is greatly dependent on the type and concentration of defects. The location and occupation of defect states, and the dispersion degree of the energy band should be carefully tuned to maximize the advantages of defects for photocatalytic reactions.

9.
Angew Chem Int Ed Engl ; 60(18): 10375-10383, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33606335

RESUMO

We reported the selective electrochemical reduction of oxygen (O2 ) to hydroxyl radicals (. OH) via 3-electron pathway with FeCo alloy encapsulated by carbon aerogel (FeCoC). The graphite shell with exposed -COOH is conducive to the 2-electron reduction pathway for H2 O2 generation stepped by 1-electron reduction towards to . OH. The electrocatalytic activity can be regulated by tuning the local electronic environment of carbon shell with the electrons coming from the inner FeCo alloy. The new strategy of . OH generation from electrocatalytic reduction O2 overcomes the rate-limiting step over electron transfer initiated by reduction-/oxidation-state cycle in Fenton process. Fast and complete removal of ciprofloxacin was achieved within 5 min in this proposed system, the apparent rate constant (kobs ) was up to 1.44±0.04 min-1 , which is comparable with the state-of-the-art advanced oxidation processes. The degradation rate almost remains the same after 50 successive runs, suggesting the satisfactory stability for practical applications.

10.
Chem Commun (Camb) ; 56(44): 5921-5924, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32342976

RESUMO

We investigate the photogenerated electron kinetics of a thermal-decomposed polymeric carbon nitride (TCN) synthesized in air using femtosecond time-resolved diffuse reflectance spectroscopy. We find that the oxygen functional groups in TCN contribute to the formation of reactive shallow trap states for photogenerated electrons, leading to an enhanced activity for photocatalytic hydrogen evolution.

11.
ACS Appl Mater Interfaces ; 12(5): 5920-5924, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913002

RESUMO

Understanding the ultrafast interfacial electron transfer (IET) process is essential for establishing the structure-property relationship of the semiconductor/cocatalyst system for photocatalytic H2 evolution. However, the IET kinetics for the near bandgap excitation has not been reported. Herein, we investigate the IET kinetics of g-C3N4/Pt as a semiconductor/cocatalyst prototype by femtosecond time-resolved diffuse reflectance spectroscopy. We find that the near bandgap excitation of g-C3N4 inhibits the IET of g-C3N4/Pt due to electron deep trapping, resulting in a markedly decreased apparent quantum efficiency for photocatalytic H2 evolution. This work complements the kinetic understanding for the photocatalytic mechanism of the semiconductor/cocatalyst system in its whole light absorption range.

12.
ACS Appl Mater Interfaces ; 11(43): 40860-40867, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31578057

RESUMO

Constructing vacancies has been demonstrated to be an effective way to modulate charge flow in semiconductor photocatalysts. However, the role of vacancies in the interfacial electron transfer (IET) of heterojunction photocatalysts remains poorly understood, which hinders the general design of heterojunction photocatalysts. Herein, by taking g-C3N4/MoS2 as a heterojunction photocatalyst prototype, we unravel that vacancies play a critical role in the IET of heterojunction photocatalysts. Theoretical simulations, combined with femtosecond time-resolved diffuse reflectance spectroscopy, give a clear physical picture that N vacancy states act as shallow trap states (STSs) for photogenerated electrons and thereby facilitate the IET process due to a large energy difference between STSs and charge separation states. Moreover, the excess electrons left by the loss of N atoms (producing N vacancies) could partially transfer to MoS2 to generate STSs in the forbidden band of MoS2, where the transferred photogenerated electrons could be further trapped to efficiently drive H2 evolution. This work suggests a promising strategy to tune IET of heterojunction photocatalysts for achieving highly efficient photocatalytic reactions.

13.
Proc Natl Acad Sci U S A ; 116(38): 18827-18833, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484775

RESUMO

The exposed active sites of semiconductor catalysts are essential to the photocatalytic energy conversion efficiency. However, it is difficult to directly observe such active sites and understand the photogenerated electron/hole pairs' dynamics on a single catalyst particle. Here, we applied a quasi-total internal reflection fluorescence microscopy and laser-scanning confocal microscopy to identify the photocatalytic active sites at a single-molecule level and visualized the photogenerated hole-electron pair dynamics on a single TiO2 particle, the most widely used photocatalyst. The experimental results and density functional theory calculations reveal that holes and electrons tend to reach and react at the same surface sites, i.e., crystal edge/corner, within a single anatase TiO2 particle owing to the highly exposed (001) and (101) facets. The observation provides solid proof for the existence of the surface junction "edge or corner" on single TiO2 particles. These findings also offer insights into the nature of the photocatalytic active sites and imply an activity-based strategy for rationally engineering catalysts for improved photocatalysis, which can be also applied for other catalytic materials.

14.
ACS Appl Mater Interfaces ; 11(37): 34430-34440, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31460738

RESUMO

The effects of glucose on the growth and surface properties of MoS2 with a nanosheet structure were investigated in detail. In the presence of glucose, the hydrothermal reaction of sodium molybdate and thiourea yields carbon-loaded MoS2 nanocomposites (C/MoS2). Compared with bare MoS2 nanosheets with more than six layers obtained in the absence of glucose and carbon spheres with a diameter of 500 nm prepared from the carbonization of glucose, C/MoS2 consists of one- or three-layered MoS2 and carbon spheres with a diameter less than 1 nm to give a large Brunauer-Emmett-Teller surface area (3-20 times larger than the individual materials). The surface characterizations reveal that both MoS2 and carbon spheres of C/MoS2 have a negative charge on the surface, suggesting that the previously reported explanation, in which the adsorption of MoS2 and/or molybdate ions on carbon spheres inhibits the growth and aggregation of MoS2, is not correct. Based on Fourier transform infrared and 1H NMR spectra, it is demonstrated that glucose acts as the hydrogen bond donor toward polyoxomolybdate species such as Mo8O264-, Mo7O246-, and MoO42- in the range of pH = 2-12. The intermolecular hydrogen bond not only inhibits the growth of both the (002) plane of MoS2 and carbon spheres, but also enables the formation of C-O-Mo bonds in the in situ generated C/MoS2. Compared with bare MoS2, C/MoS2 not only show a lower over-potential by 60 mV for the electrocatalytic evolution of hydrogen, but also has a larger mass specific capacitance by three times, due to the larger surface area and the interfacial interaction through the C-O-Mo bonds.

15.
J Phys Chem Lett ; 10(14): 4017-4024, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31276412

RESUMO

Examination of the spectral and kinetic characteristics of charge carrier recombination on nanostructured semiconductors by photoluminescence (PL) plays a significant role in understanding the photocatalytic process. Here, with an in situ single-particle PL technique, we studied the transport behavior of charge carriers in individual one-dimensional (1D) core-shell structures of CdS@CuS nanowires. Through the PL intensity changes in the single-particle PL spectroscopy, effective interfacial electron transport along the interface of CdS and CuS was observed, which contributes to the significant improvement (i.e., 13.5-fold increase) of photocatalytic H2 production compared to that for pure CdS nanowires. The present study provides visual experimental evidence for understanding restraining of charge carrier recombination in the semiconductor.

16.
Environ Sci Technol ; 53(14): 8302-8313, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31149813

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that has received concerns worldwide due to its extreme resistance to conventional degradation. A mechanochemical (MC) method was developed for complete degradation of PFOA by using alumina (Al2O3) and potassium persulfate (PS) as comilling agents. After ball milling for 2 h, the MC treatment using Al2O3 or PS caused conversion of PFOA to either 1-H-1-perfluoroheptene or dimers with a defluorination efficiency lower than 20%, but that using both Al2O3 and PS caused degradation of PFOA with a defluorination of 100% and a mineralization of 98%. This method also caused complete defluorination of other C3∼C6 homologues of PFOA. The complete defluorination of PFOA attributes to Al2O3 and PS led to the weakening of the C-F bond in PFOA and the generation of hydroxyl radical (•OH), respectively. During the MC degradation, Al2O3 strongly anchors PFOA through COO--Al coordination and in situ formed from Lewis-base interaction and PS through hydrogen bond. Meanwhile, mechanical effects induce the homolytic cleavage of PS to produce SO4•-, which reacts with OH group of Al2O3 to generate •OH. The degradation of PFOA is initiated by decarboxylation as a result of weakened C-COO- due to Al3+ coordination. The subsequent addition of •OH, elimination of HF, and reaction with water induce the stepwise removal of all carboxyl groups and F atoms as CO2 and F-, respectively. Thus, complete defluorination and mineralization are achieved.


Assuntos
Óxido de Alumínio , Fluorocarbonos , Caprilatos , Radical Hidroxila
17.
J Phys Chem A ; 123(22): 4737-4742, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31096753

RESUMO

[ n]Cycloparaphenylenes ([ n]CPPs; n, number of phenyl rings) have gained considerable attention because they exhibit interesting properties owing to their highly strained structure and radially oriented p orbitals. Recently, [ n]CPPs with n ≥ 5 have been synthesized, but the ring-size dependence of the deactivation processes of the excited states has not been explained particularly for smaller [ n]CPPs ( n ≤ 7). In the present study, we characterized the deactivation processes of [ n]CPPs (5 ≤ n ≤ 12) using transient absorption spectroscopy at sub-pico-, sub-nano-, nano-, and microsecond time scales. Although the fluorescence quantum yield increased with the ring size, the longest S1-state lifetime was observed with [8]CPP, and both the decrease and increase of the ring size resulted in the decrease of the lifetime. Characterization of the intersystem crossing and internal conversion processes explained unique ring-size dependence of the deactivation processes of [ n]CPPs, i.e., the enhanced radiation rate of the larger CPP and the fast internal conversion rate of smaller CPP dominate their S1-state lifetimes.

18.
Chem Commun (Camb) ; 55(43): 6014-6017, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31062007

RESUMO

Au TNP/g-C3N4 as a plasmonic photocatalyst for H2 production under NIR light irradiation was investigated by finite-difference time-domain (FDTD) simulations and time-resolved transient absorption measurements, revealing enhanced H2 production owing to a stronger electromagnetic field in Au TNP/g-C3N4 and plasmon-induced hot electron transfer from Au TNPs to g-C3N4.

19.
J Org Chem ; 84(14): 8910-8920, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31072099

RESUMO

In this study, we report the generation of new mixed-valence (MV) subspecies with charge-separated (CS) characters from an unsymmetrical acceptor-donor-donor (A-D-D) triad. The triad was synthesized by attaching a dimesitylboryl group (A) to a D-D conjugate that consisted of triarylamine (NAr3) units. The MV radical cation, obtained by chemical oxidation of the triad, exhibited a strong intervalence charge transfer (IVCT) absorption derived from the bis(NAr3)•+ moiety in the near-IR region. The charge-separated MV (CSMV) state, obtained by photoexcitation of the triad, caused a blue shift in IVCT energy in the femtosecond transient absorption spectra, reflecting a bias of positive charge distributions to the D end site. This resulted from increased electron density at the A site and restructuring of the central D site from NAr3 to NAr2 sites. Interestingly, any shift in the IVCT energy that was caused by the polarity of the solvent was minimal, reflecting the unique characteristics of the CSMV state. These findings represent the first detailed analysis of the CSMV state, including a comparison with conventional MV states. Therefore, this work provides new insights into counterion-free MV systems and their applications in molecular devices.

20.
Chemistry ; 25(32): 7711-7718, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30957282

RESUMO

Despite numerous experimental and theoretical studies, the proton transfer accompanying the oxidation of 2'-deoxyadenosine 5'-monophosphate 2'-deoxyadenosine 5'-monophosphate (5'-dAMP, A) is still under debate. To address this issue, we have investigated the oxidation of A in acidic and neutral solutions by using transient absorption (TA) and time-resolved resonance Raman (TR3 ) spectroscopic methods in combination with pulse radiolysis. The steady-state Raman signal of A was significantly affected by the solution pH, but not by the concentration of adenosine (2-50 mm). More specifically, the A in acidic and neutral solutions exists in its protonated (AH+ (N1+H+ )) and neutral (A) forms, respectively. On the one hand, the TA spectral changes observed at neutral pH revealed that the radical cation (A.+ ) generated by pulse radiolysis is rapidly converted into A. (N6-H) through the loss of an imino proton from N6. In contrast, at acidic pH (<4), AH.2+ (N1+H+ ) generated by pulse radiolysis of AH+ (N1+H+ ) does not undergo the deprotonation process owing to the pKa value of AH.2+ (N1+H+ ), which is higher than the solution pH. Furthermore, the results presented in this study have demonstrated that A, AH+ (N1+H+ ), and their radical species exist as monomers in the concentration range of 2-50 mm. Compared with the Raman bands of AH+ (N1+H+ ), the TR3 bands of AH.2+ (N1+H+ ) are significantly down-shifted, indicating a decrease in the bond order of the pyrimidine and imidazole rings due to the resonance structure of AH.2+ (N1+H+ ). Meanwhile, A. (N6-H) does not show a Raman band corresponding to the pyrimidine+NH2 scissoring vibration due to diprotonation at the N6 position. These results support the final products generated by the oxidation of adenosine in acidic and neutral solutions being AH.2+ (N1+H+ ) and A. (N6-H), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA