Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Chim Acta ; 554: 117786, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246209

RESUMO

BACKGROUND AND AIMS: Abdominal aortic aneurysm (AAA) patients undergo uniform surveillance programs both leading up to, and following surgery. Circulating biomarkers could play a pivotal role in individualizing surveillance. We applied a multi-omics approach to identify relevant biomarkers and gain pathophysiological insights. MATERIALS AND METHODS: In this cross-sectional study, 108 AAA patients and 200 post-endovascular aneurysm repair (post-EVAR) patients were separately investigated. We performed partial least squares regression and ingenuity pathway analysis on circulating concentrations of 96 proteins (92 Olink Cardiovascular-III panel, 4 ELISA-assays) and 199 metabolites (measured by LC-TQMS), and their associations with CT-based AAA/sac volume. RESULTS: The median (25th-75th percentile) maximal diameter was 50.0 mm (46.0, 53.0) in the AAA group, and 55.4 mm (45.0, 64.2) in the post-EVAR group. Correcting for clinical characteristics in AAA patients, the aneurysm volume Z-score differed 0.068 (95 %CI: (0.042, 0.093)), 0.066 (0.047, 0.085) and -0.051 (-0.064, -0.038) per Z-score valine, leucine and uPA, respectively. After correcting for clinical characteristics and orthogonalization in the post-EVAR group, the sac volume Z-score differed 0.049 (0.034, 0.063) per Z-score TIMP-4, -0.050 (-0.064, -0.037) per Z-score LDL-receptor, -0.051 (-0.062, -0.040) per Z-score 1-OG/2-OG and -0.056 (-0.066, -0.045) per Z-score 1-LG/2-LG. CONCLUSIONS: The branched-chain amino acids and uPA were related to AAA volume. For post-EVAR patients, LDL-receptor, monoacylglycerols and TIMP-4 are potential biomarkers for sac volume. Additionally, distinct markers for sac change were identified.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Aneurisma da Aorta Abdominal/cirurgia , Correção Endovascular de Aneurisma , Estudos Transversais , Proteômica , Resultado do Tratamento , Estudos Retrospectivos , Fatores de Risco
2.
Vasc Med ; 28(5): 433-442, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395286

RESUMO

BACKGROUND: Surveillance programs in abdominal aortic aneurysms (AAA) are mainly based on imaging and leave room for improvement to timely identify patients at risk for AAA growth. Many biomarkers are dysregulated in patients with AAA, which fuels interest in biomarkers as indicators of disease progression. We examined associations of 92 cardiovascular disease (CVD)-related circulating biomarkers with AAA and sac volume. METHODS: In a cross-sectional analysis, we separately investigated (1) 110 watchful waiting (WW) patients (undergoing periodic surveillance imaging without planned intervention) and (2) 203 patients after endovascular aneurysm repair (EVAR). The Cardiovascular Panel III (Olink Proteomics AB, Sweden) was used to measure 92 CVD-related circulating biomarkers. We used cluster analyses to investigate protein-based subphenotypes, and linear regression to examine associations of biomarkers with AAA and sac volume on CT scans. RESULTS: Cluster analyses revealed two biomarker-based subgroups in both WW and EVAR patients, with higher levels of 76 and 74 proteins, respectively, in one subgroup versus the other. In WW patients, uPA showed a borderline significant association with AAA volume. Adjusting for clinical characteristics, there was a difference of -0.092 (-0.148, -0.036) loge mL in AAA volume per SD uPA. In EVAR patients, after multivariable adjustment, four biomarkers remained significantly associated with sac volume. The mean effects on sac volume per SD difference were: LDLR: -0.128 (-0.212, -0.044), TFPI: 0.139 (0.049, 0.229), TIMP4: 0.110 (0.023, 0.197), IGFBP-2: 0.103 (0.012, 0.194). CONCLUSION: LDLR, TFPI, TIMP4, and IGFBP-2 were independently associated with sac volume after EVAR. Subgroups of patients with high levels of the majority of CVD-related biomarkers emphasize the intertwined relationship between AAA and CVD.ClinicalTrials.gov Identifier: NCT03703947.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Doenças Cardiovasculares , Procedimentos Endovasculares , Humanos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina , Doenças Cardiovasculares/etiologia , Estudos Transversais , Implante de Prótese Vascular/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Resultado do Tratamento , Fatores de Risco , Estudos Retrospectivos
3.
Circ Cardiovasc Genet ; 3(3): 232-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20530761

RESUMO

BACKGROUND: Left ventricular (LV) noncompaction (LVNC) is a distinct cardiomyopathy featuring a thickened bilayered LV wall consisting of a thick endocardial layer with prominent intertrabecular recesses with a thin, compact epicardial layer. Similar to hypertrophic and dilated cardiomyopathy, LVNC is genetically heterogeneous and was recently associated with mutations in sarcomere genes. To contribute to the genetic classification for LVNC, a systematic cardiological family study was performed in a cohort of 58 consecutively diagnosed and molecularly screened patients with isolated LVNC (49 adults and 9 children). METHODS AND RESULTS: Combined molecular testing and cardiological family screening revealed that 67% of LVNC is genetic. Cardiological screening with electrocardiography and echocardiography of 194 relatives from 50 unrelated LVNC probands revealed familial cardiomyopathy in 32 families (64%), including LVNC, hypertrophic cardiomyopathy, and dilated cardiomyopathy. Sixty-three percent of the relatives newly diagnosed with cardiomyopathy were asymptomatic. Of 17 asymptomatic relatives with a mutation, 9 had noncompaction cardiomyopathy. In 8 carriers, nonpenetrance was observed. This may explain that 44% (14 of 32) of familial disease remained undetected by ascertainment of family history before cardiological family screening. The molecular screening of 17 genes identified mutations in 11 genes in 41% (23 of 56) tested probands, 35% (17 of 48) adults and 6 of 8 children. In 18 families, single mutations were transmitted in an autosomal dominant mode. Two adults and 2 children were compound or double heterozygous for 2 different mutations. One adult proband had 3 mutations. In 50% (16 of 32) of familial LVNC, the genetic defect remained inconclusive. CONCLUSION: LVNC is predominantly a genetic cardiomyopathy with variable presentation ranging from asymptomatic to severe. Accordingly, the diagnosis of LVNC requires genetic counseling, DNA diagnostics, and cardiological family screening.


Assuntos
Cardiomiopatias/diagnóstico , Ventrículos do Coração , Adolescente , Adulto , Miosinas Cardíacas/genética , Cardiomiopatias/genética , Proteínas de Transporte/genética , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Aconselhamento Genético , Genótipo , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Mutação , Cadeias Pesadas de Miosina/genética , Linhagem , Sarcômeros/genética
4.
Hum Mutat ; 31(5): 521-37, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20151405

RESUMO

Mutations in the von Hippel-Lindau (VHL) gene are responsible for VHL disease, congenital polycythemia, and are found in many sporadic tumor types as well. Reports of VHL mutations are dispersed throughout original articles and databases that have not been recently updated. We compiled a comprehensive mutation table of 1,548 germline and somatic VHL mutations, derived from this protein of only 213 amino acids. We describe detailed phenotype and gene mutation information for 945 VHL families, including 30 previously unpublished kindreds from The Netherlands (six novel mutations). These data represent the most extensive catalog of germline VHL mutations to date. We also review VHL disease, known and theorized pathogenesis of common VHL manifestations, and genotype-phenotype correlations. Analysis of all VHL families, excluding germline mutations resulting in congenital polycythemias, describes the spectrum of mutation types: 52% missense, 13% frameshift, 11% nonsense, 6% in-frame deletions/insertions, 11% large/complete deletions, and 7% splice mutations. This easy-to-use compilation of VHL mutations is intended to facilitate research and function as a necessary adjunct for physicians when providing patient information.


Assuntos
Estudos de Associação Genética , Doença de von Hippel-Lindau/diagnóstico , Doença de von Hippel-Lindau/genética , Mutação da Fase de Leitura , Mutação em Linhagem Germinativa , Humanos , Neoplasias Renais/genética , Mutação , Linhagem , Doença de von Hippel-Lindau/patologia
5.
Am J Med Genet A ; 149A(2): 216-25, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19161153

RESUMO

Only a limited number of families with clear monogenic inheritance of nonsyndromic forms of congenital valve defects have been described. We describe two multiplex pedigrees with a similar nonsyndromic form of heart valve anomalies that segregate as an autosomal dominant condition. The first family is a three-generation pedigree with 10 family members affected with congenital defects of the cardiac valves, including six patients with aortic stenosis and/or aortic regurgitation. Pulmonary and/or tricuspid valve abnormalities were present in three patients, and ventricular septal defect (VSD) was present in two patients. The second family consists of 11 patients in three generations with aortic valve stenosis in seven patients, defects of the pulmonary valves in two patients, and atrial septal defect (ASD) in two patients. Incomplete penetrance was observed in both families. Although left-ventricular outflow tract obstruction was present in most family members, the co-occurrence with pulmonary valve abnormalities and septal defects in both families is uncommon. These families provide evidence that left-sided obstructive defects and thoracic aortic aneurysm may be accompanied by right-sided defects, and even septal defects. These families might be instrumental in identifying genes involved in cardiac valve morphogenesis and malformation.


Assuntos
Genes Dominantes , Valvas Cardíacas/anormalidades , Obstrução do Fluxo Ventricular Externo/genética , Saúde da Família , Comunicação Interventricular/genética , Humanos , Penetrância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA