Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 30(1): 75-91, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371182

RESUMO

CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Processamento Alternativo , Sistemas CRISPR-Cas , Proteínas de Ligação a Calmodulina/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Miotonina Proteína Quinase/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Expansão das Repetições de Trinucleotídeos/genética
2.
Nucleic Acids Res ; 46(16): 8275-8298, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29947794

RESUMO

CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mioblastos/metabolismo , Distrofia Miotônica/genética , Expansão das Repetições de Trinucleotídeos/genética , Células Cultivadas , Criança , Feminino , Humanos , Pessoa de Meia-Idade , Desenvolvimento Muscular/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia
3.
Cytotherapy ; 19(10): 1208-1224, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28864291

RESUMO

Diabetic neuropathy (DN) is among the most debilitating complications of diabetes. Here, we investigated the effects of human dental pulp stem cell (DPSC) transplantation in Streptozotocin (STZ)-induced neuropathic rats. Six weeks after STZ injection, DPSCs were transplanted through two routes, intravenous (IV) or intramuscular (IM), in single or two repeat doses. Two weeks after transplantation, a significant improvement in hyperalgesia, grip-strength, motor coordination and nerve conduction velocity was observed in comparison with controls. A rapid improvement in neuropathic symptoms was observed for a single dose of DPSC IV; however, repeat dose of DPSC IV did not bring about added improvement. A single dose of DPSC IM showed steady improvement, and further recovery continued upon repeat IM administration. DPSC single dose IV showed greater improvement than DPSC single dose IM, but IM transplantation brought about better improvement in body weight. A marked reduction in tumor necrosis factor (TNF) α and C-reactive protein (CRP) levels was observed in the blood plasma for all treated groups, as compared with controls. With respect to inflammatory cytokines, repeat dose of DPSC IM showed further improvement, suggesting that a repeat dose is required to maintain the improved inflammatory state. Gene expression of inflammatory markers in liver confirmed amelioration in inflammation. Arachidonic acid level was unaffected by IV DPSC transplantation but showed noticeable increase through IM administration of a repeat dose. These results suggest that DPSC transplantation through both routes and dosage was beneficial for the retrieval of neuropathic parameters of DN; transplantation via the IM route with repeat dose was the most effective.


Assuntos
Polpa Dentária/citologia , Neuropatias Diabéticas/terapia , Transplante de Células-Tronco/métodos , Adolescente , Adulto , Animais , Peso Corporal , Proteína C-Reativa/metabolismo , Citocinas/sangue , Diabetes Mellitus Experimental/etiologia , Neuropatias Diabéticas/etiologia , Modelos Animais de Doenças , Humanos , Injeções Intramusculares , Injeções Intravenosas , Masculino , Ratos , Fator de Necrose Tumoral alfa/sangue
4.
J Cell Physiol ; 231(9): 2048-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26773559

RESUMO

Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/fisiologia , Polpa Dentária/metabolismo , Neurônios Dopaminérgicos/citologia , Plasticidade Neuronal/fisiologia , Células-Tronco/citologia , Dente Decíduo/citologia , Adolescente , Adulto , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Criança , Polpa Dentária/citologia , Células Epiteliais/metabolismo , Humanos , Adulto Jovem
5.
J Cell Physiol ; 229(10): 1369-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24477667

RESUMO

Dental pulp originating from the neural crest is considered a better source of postnatal stem cells for cell-based therapies in neurodegenerative diseases. Dental Pulp Stem Cells (DPSCs) have been shown to differentiate into cell-types of cranial neural crest ontology; however, their ability to differentiate to functional neurons of the central nervous system remains to be studied. We hypothesized that midbrain cues might commit DPSCs to differentiate to functional dopaminergic cell-type. As expected, DPSCs in their naïve state spontaneously expressed early and mature neuronal markers like nestin, musashi12, ß tubulin III, and Map2ab. On exposure to midbrain cues (sonic hedgehog, fibroblast growth factor 8 and basic fibroblast growth factor), DPSCs showed upregulation of dopaminergic neuron-specific transcription factors Nuclear Receptor related protein 1 (Nurr1), Engrailed 1 (En1) and paired-like homeodomain transcription factor 3 (Pitx3) as revealed by real-time RT-PCR. Immunofluorescence and flow cytometry analysis showed enhanced expression of mature neuronal marker Map2ab and dopaminergic-neuronal markers [tyrosine hydroxylase (TH), En1, Nurr1, and Pitx3], with nearly 77% of the induced DPSCs positive for TH. Functional studies indicated that the induced DPSCs could secrete dopamine constitutively and upon stimulation with potassium chloride (KCl) and adenosine triphosphate (ATP), as measured by dopamine ELISA. Additionally, the induced DPSCs showed intracellular Ca(2+) influx in the presence of KCl, unlike control DPSCs. ATP-stimulated Ca(2+) influx was observed in control and induced DPSCs, but only the induced cells secreted dopamine. Our data clearly demonstrate for the first time that DPSCs in the presence of embryonic midbrain cues show efficient propensity towards functional dopaminergic cell-type.


Assuntos
Polpa Dentária/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Neurogênese , Transdução de Sinais , Células-Tronco/metabolismo , Adipogenia , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Sinalização do Cálcio , Linhagem da Célula , Polpa Dentária/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteogênese , Células PC12 , Ratos , Nicho de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA