Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175812

RESUMO

Mammalian UNC119 is a ciliary trafficking chaperone highly expressed in the inner segment of retinal photoreceptors. Previous research has shown that UNC119 can bind to transducin, the synaptic ribbon protein RIBEYE, and the calcium-binding protein CaBP4, suggesting that UNC119 may have a role in synaptic transmission. We made patch-clamp recordings from retinal slices in mice with the UNC119 gene deleted and showed that removal of even one gene of UNC119 has no effect on the rod outer segment photocurrent, but acted on bipolar cells much like background light: it depolarized membrane potential, decreased sensitivity, accelerated response decay, and decreased the Hill coefficient of the response-intensity relationship. Similar effects were seen on rod bipolar-cell current and voltage responses, and after exposure to bright light to translocate transducin into the rod inner segment. These findings indicate that UNC119 deletion reduces the steady-state glutamate release rate at rod synapses, though no change in the voltage dependence of the synaptic Ca current was detected. We conclude that UNC119, either by itself or together with transducin, can facilitate the release of glutamate at rod synapses, probably by some interaction with RIBEYE or other synaptic proteins rather than by binding to CaBP4 or calcium channels.


Assuntos
Transmissão Sináptica , Transducina , Animais , Camundongos , Glutamatos/metabolismo , Mamíferos/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Transducina/metabolismo
2.
ACS Chem Biol ; 17(4): 776-784, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35311290

RESUMO

To aid in the prioritization of deubiquitinases (DUBs) as anticancer targets, we developed an approach combining activity-based protein profiling (ABPP) with mass spectrometry in both non-small cell lung cancer (NSCLC) tumor tissues and cell lines along with analysis of available RNA interference and CRISPR screens. We identified 67 DUBs in NSCLC tissues, 17 of which were overexpressed in adenocarcinoma or squamous cell histologies and 12 of which scored as affecting lung cancer cell viability in RNAi or CRISPR screens. We used the CSN5 inhibitor, which targets COPS5/CSN5, as a tool to understand the biological significance of one of these 12 DUBs, COPS6, in lung cancer. Our study provides a powerful resource to interrogate the role of DUB signaling biology and nominates druggable targets for the treatment of lung cancer subtypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Transdução de Sinais
3.
Mol Cancer Res ; 20(4): 542-555, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022314

RESUMO

To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS: Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.


Assuntos
Neoplasias Pulmonares , Proteômica , Linhagem Celular Tumoral , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Transdução de Sinais
4.
J Biol Chem ; 293(40): 15332-15346, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30126843

RESUMO

The retinal degeneration model rd10 contains a missense mutation of the catalytic PDE6 ß subunit, which hydrolyzes cGMP in response to light. This model produces cell death more slowly than others caused by PDE6 loss of function, making it of particular interest for studying potential therapeutics. We used morphology, biochemistry, and single-cell physiology to examine the mechanism of rd10 degeneration. Our results show that the mutation produces no alteration of Pde6b RNA but does dramatically decrease maximal and basal PDE6 activity, apparently caused by a decrease in protein stability and transport. The enzymatic properties of the remaining mutant PDE6 appear to be nearly normal. We demonstrate that an increase in free cGMP, which would result from decreased PDE6 activity and serve to increase opening of the cGMP-gated channels and calcium influx, is an underlying cause of cell death: degeneration of rd10/Cngb1-/- double mutants is slower than the parent rd10 line. Paradoxically, degeneration in rd10/Cngb1-/- is also slower than in Cngb1-/- This rescue is correlated with a lowering of cGMP content in Cngb1-/- retinas and suggests that it may be caused by mislocalization of active PDE6. Single-cell recordings from rd10 rods show that the rates of rise and decay of the response are significantly slower; simulations indicate that these changes are primarily the result of the decrease in PDE6 concentration and rod collecting area. Together, these results provide insights into the complex mechanisms that underlie rd10-mediated retinal degeneration and a cautionary note for analysis of therapeutic interventions.


Assuntos
Cálcio/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Morte Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Modelos Animais de Doenças , Regulação da Expressão Gênica , Transporte de Íons , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/deficiência , Estabilidade Proteica , Transporte Proteico , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Transdução de Sinais , Análise de Célula Única , Fatores de Tempo
5.
Methods Mol Biol ; 1753: 203-216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564791

RESUMO

Mice have been widely used as a model organism to study mechanisms of phototransduction and synaptic transmission in the retina. Genetic manipulations and electrophysiological techniques for analysis of photoreceptor and rod bipolar cell function in mice are uniquely advanced. Here, we describe a set of biochemical and electrophysiological techniques for evaluation of synaptic transmission at the rod-rod bipolar cell synapse, which represents the first and key step in the processing of dim-light visual information.


Assuntos
Transdução de Sinal Luminoso/fisiologia , Estimulação Luminosa/métodos , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Transmissão Sináptica/fisiologia , Animais , Eletrodos , Camundongos , Modelos Animais , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Estimulação Luminosa/instrumentação , Rodopsina/análise
6.
J Neurochem ; 135(1): 165-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26139345

RESUMO

Mutations in the primate-specific proline-rich domain (PRD) of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are thought to cause Leber congenital amaurosis or dominant cone-rod dystrophy. The role of PRD and the mechanisms of PRD mutations are poorly understood. Here, we have examined properties of hAIPL1 and effects of the PRD mutations on protein structure and function. Solution structures of hAIPL1, hAIPL11-316 with PRD truncation, and the P351Δ12 and P376S mutants were examined by small angle X-ray scattering. Our analysis suggests that PRD assumes an extended conformation and does not interact with the FK506-binding and tetratricopeptide domains. The PRD truncation, but not PRD mutations, reduced the molecule's radius of gyration and maximum dimension. We demonstrate that hAIPL1 is a monomeric protein, and its secondary structure and stability are not affected by the PRD mutations. PRD itself is an extended monomeric random coil. The PRD mutations caused little or no changes in hAIPL1 binding to known partners, phosphodiesterase-6A and HSP90. We also identified the γ-subunit of phosphodiesterase-6 as a novel partner of hAIPL1 and hypothesize that this interaction is altered by P351Δ12. Our results highlight the complexity of mechanisms of PRD mutations in disease and the possibility that certain mutations are benign variants. Mutations in the proline-rich domain (PRD) of human AIPL1 cause severe retinal diseases, yet the role of PRD and the mechanisms of PRD mutations are unknown. Here, we describe a SAXS-derived solution structure of AIPL1 and functional properties of disease-linked AIPL1-PRD mutants. This structure and functional analyses provide a framework for understanding the mechanisms of PRD in disease.


Assuntos
Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Animais , Proteínas do Olho/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Conformação Molecular , Mutação/genética , Doenças Retinianas/genética , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
7.
J Neurosci ; 35(24): 9225-35, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085644

RESUMO

Despite the expression of homologous phototransduction components, the molecular basis for differences in light-evoked responses between rod and cone photoreceptors remains unclear. We examined the role of cGMP phosphodiesterase (PDE6) in this difference by expressing cone PDE6 (PDE6C) in rd1/rd1 rods lacking rod PDE6 (PDE6AB) using transgenic mice. The expression of PDE6C rescues retinal degeneration observed in rd1/rd1 rods. Double-transgenic rods (PDE6C++) were compared with rd1/+ rods based on similar PDE6 expression. PDE6C increased the basal PDE activity and speeded the rate-limiting step for phototransduction deactivation, causing rod photoresponses to appear light adapted, with reduced dark current and sensitivity and faster response kinetics. When PDE6C++ and rd1/+ rods were exposed to similar background light, rd1/+ rods displayed greater desensitization. These results indicate an increased spontaneous activity and faster deactivation of PDE6C compared with PDE6AB in darkness, but that background light increases steady PDE6C activity to a lesser extent. In addition to accelerating the recovery of the photoresponse, faster PDE6C deactivation may blunt the rise in background-induced steady PDE6C activity. Therefore, higher basal PDE6C activity and faster deactivation together partially account for faster and less sensitive cone photoresponses in darkness, whereas a reduced rise of steady PDE6C activity in background light may allow cones to avoid saturation. SIGNIFICANCE STATEMENT: Cones are the primary photoreceptors responsible for most of our visual experience. Cone light responses are less sensitive and display speeded responses compared with rods. Despite the fact that rods and cones use a G-protein signaling cascade with similar organization, the mechanistic basis for these differences remains unclear. Here, we examined the role of distinct isoforms of PDE6, the effector enzyme in phototransduction, in these differences. We developed a transgenic mouse model that expresses cone PDE6 in rods and show that the cone PDE6 isoform is partially responsible for the difference in sensitivity and response kinetics between rods and cones.


Assuntos
Adaptação Ocular/fisiologia , Domínio Catalítico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Mol Cell Neurosci ; 64: 1-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461672

RESUMO

Phosphodiesterase-6 (PDE6) is an essential effector enzyme in vertebrate photoreceptor cells. Mutations in rod and cone PDE6 cause recessive retinitis pigmentosa and achromatopsia, respectively. The mechanisms of missense PDE6 mutations underlying severe visual disorders are poorly understood. To probe these mechanisms, we expressed seven known missense mutants of cone PDE6C in rods of transgenic Xenopus laevis and examined their stability and compartmentalization. PDE6C proteins with mutations in the catalytic domain, H602L and E790K, displayed modestly reduced proteolytic stability, but they were properly targeted to the outer segment of photoreceptor cells. Mutations in the regulatory GAF domains, R104W, Y323N, and P391L led to a proteolytic degradation of the proteins involving a cleavage in the GAFb domain. Lastly, the R29W and M455V mutations residing outside the conserved PDE6 domains produced a pattern of subcellular compartmentalization different from that of PDE6C. Thus, our results suggest a spectrum of mechanisms of missense PDE6C mutations in achromatopsia including catalytic defects, protein mislocalization, or a specific sequence of proteolytic degradation.


Assuntos
Defeitos da Visão Cromática/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Mutação de Sentido Incorreto , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Dados de Sequência Molecular , Estabilidade Proteica , Transporte Proteico , Proteólise , Xenopus
9.
FEBS J ; 282(3): 550-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425538

RESUMO

Uncoordinated 119 protein (UNC119) is a partner of transducin-α subunit (Gαt ) that is essential for transducin trafficking in rod photoreceptors. The interaction is known to involve binding of the acylated N terminus of Gαt to the hydrophobic pocket of UNC119. To gain insights into the mechanism of transducin trafficking, we isolated a highly pure protein complex between myristoylated chimeric Gαt (Gαt *) and UNC11950₋240, and examined the solution structure by small angle X-ray scattering and chemical crosslinking. The solution structure of the Gαt -UNC11950₋240 complex was derived with rigid body/ab initio modeling against the small angle X-ray scattering data by use of known atomic structures of Gαt and UNC119, and a distance constraint based on the protein crosslinking with p-phenyldimaleimide. The model of the Gαt -UNC11950₋240 complex indicates rotation and bending of the N-terminal α-helix of Gαt from its position in the structure of the heterotrimeric G-protein transducin (Gt ). This allows a considerably more compact complex conformation, which also suggests a novel interface involving the switch II/α3-ß5 surface of Gαt . Supporting a novel interface, UNC119 was found to bind full-length Gαt * more strongly than the Gαt N-terminal peptide. Furthermore, UNC119 competed with the effector molecule phosphodiesterase-6 γ-subunit, which is known to bind to the same surface of Gαt . The solution structure of the Gαt -UNC119 complex suggests that the ability of UNC119 to dissociate Gt subunits and release Gαt from the membrane is attributable to disruption and sterical occlusion of the Gß1γ1-binding sites on Gαt .


Assuntos
Transducina/química , Transducina/metabolismo , Sítios de Ligação , Modelos Moleculares , Estrutura Secundária de Proteína , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
10.
PLoS One ; 9(4): e95768, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24760071

RESUMO

Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 ß-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6ß1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6ß1-313. We found that PDE6ß1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αß catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6ß protein, PDE6ß1-313 and PDE6ß1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Oftalmopatias Hereditárias/etiologia , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/etiologia , Miopia/metabolismo , Cegueira Noturna/etiologia , Cegueira Noturna/metabolismo , Animais , Animais Geneticamente Modificados , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Transdução de Sinal Luminoso/genética , Transdução de Sinal Luminoso/fisiologia , Mutação , Miopia/genética , Cegueira Noturna/genética , Transducina , Xenopus laevis
11.
Channels (Austin) ; 7(6): 514-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24064553

RESUMO

Mutations in the gene encoding Cav 1.4, CACNA1F, are associated with visual disorders including X-linked incomplete congenital stationary night blindness type 2 (CSNB2). In mice lacking Cav 1.4 channels, there are defects in the development of "ribbon" synapses formed between photoreceptors (PRs) and second-order neurons. However, many CSNB2 mutations disrupt the function rather than expression of Cav 1.4 channels. Whether defects in PR synapse development due to altered Cav 1.4 function are common features contributing to the pathogenesis of CSNB2 is unknown. To resolve this issue, we profiled changes in the subcellular distribution of Cav 1.4 channels and synapse morphology during development in wild-type (WT) mice and mouse models of CSNB2. Using Cav 1.4-selective antibodies, we found that Cav 1.4 channels associate with ribbon precursors early in development and are concentrated at both rod and cone PR synapses in the mature retina. In mouse models of CSNB2 in which the voltage-dependence of Cav 1.4 activation is either enhanced (Cav 1.4I756T) or inhibited (CaBP4 KO), the initial stages of PR synaptic ribbon formation are largely unaffected. However, after postnatal day 13, many PR ribbons retain the immature morphology. This synaptic abnormality corresponds in severity to the defect in synaptic transmission in the adult mutant mice, suggesting that lack of sufficient mature synapses contributes to vision impairment in Cav 1.4I756T and CaBP4 KO mice. Our results demonstrate the importance of proper Cav 1.4 function for efficient PR synapse maturation, and that dysregulation of Cav 1.4 channels in CSNB2 may have synaptopathic consequences.


Assuntos
Canais de Cálcio/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Miopia/metabolismo , Miopia/patologia , Cegueira Noturna/metabolismo , Cegueira Noturna/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Oftalmopatias Hereditárias/genética , Feminino , Técnicas de Inativação de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Células HEK293 , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Miopia/genética , Cegueira Noturna/genética , Transporte Proteico
12.
Proc Natl Acad Sci U S A ; 110(30): 12468-73, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836670

RESUMO

In rod photoreceptors, several phototransduction components display light-dependent translocation between cellular compartments. Notably, the G protein transducin translocates from rod outer segments to inner segments/spherules in bright light, but the functional consequences of translocation remain unclear. We generated transgenic mice where light-induced transducin translocation is impaired. These mice exhibited slow photoreceptor degeneration, which was prevented if they were dark-reared. Physiological recordings showed that control and transgenic rods and rod bipolar cells displayed similar sensitivity in darkness. After bright light exposure, control rods were more strongly desensitized than transgenic rods. However, in rod bipolar cells, this effect was reversed; transgenic rod bipolar cells were more strongly desensitized than control. This sensitivity reversal indicates that transducin translocation in rods enhances signaling to rod bipolar cells. The enhancement could not be explained by modulation of inner segment conductances or the voltage sensitivity of the synaptic Ca(2+) current, suggesting interactions of transducin with the synaptic machinery.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Transmissão Sináptica/fisiologia , Transducina/metabolismo , Animais , Escuridão , Luz , Camundongos , Camundongos Transgênicos , Transporte Proteico , Degeneração Retiniana/prevenção & controle , Células Fotorreceptoras Retinianas Bastonetes/citologia , Transducina/fisiologia
13.
J Biol Chem ; 288(29): 21320-21328, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23737531

RESUMO

Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor specific chaperone of the visual effector enzyme phosphodiesterase-6 (PDE6). AIPL1 has been shown to bind the farnesylated PDE6A subunit. Mutations in AIPL1 are thought to destabilize PDE6 and thereby cause Leber congenital amaurosis type 4 (LCA4), a severe form of childhood blindness. Here, we examined the solution structure of AIPL1 by small angle x-ray scattering. A structural model of AIPL1 with the best fit to the scattering data features two independent FK506-binding protein (FKBP)-like and tetratricopeptide repeat domains. Guided by the model, we tested the hypothesis that AIPL1 directly binds the farnesyl moiety. Our studies revealed high affinity binding of the farnesylated-Cys probe to the FKBP-like domain of AIPL1, thus uncovering a novel function of this domain. Mutational analysis of the potential farnesyl-binding sites on AIPL1 identified two critical residues, Cys-89 and Leu-147, located in close proximity in the structure model. The L147A mutation and the LCA-linked C89R mutation prevented the binding of the farnesyl-Cys probe to AIPL1. Furthermore, Cys-89 and Leu-147 flank the unique insert region of AIPL1, deletion of which also abolished the farnesyl interaction. Our results suggest that the binding of PDE6A farnesyl is essential to normal function of AIPL1 and its disruption is one of the mechanisms underlying LCA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Prenilação , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Cisteína/metabolismo , Humanos , Amaurose Congênita de Leber/genética , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Cell Signal ; 25(1): 341-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23072788

RESUMO

A recently discovered interaction of rod transducin α subunit (Gα(t1)) with UNC119a is thought to be important for transducin trafficking in photoreceptors. In this study, we analyzed the subcellular distribution of UNC119a under different conditions of illumination in vivo. Analyses by immunofluorescence and Western blotting of retina serial tangential sections demonstrated that UNC119a resides predominantly in the rod inner segment, with a small fraction of UNC119a also appearing to infiltrate the rod outer segment. Such a distribution is consistent with the proposed role of UNC119a in facilitating transducin transport from the rod inner segment to the outer segment in the dark. In addition, UNC119a was present in smaller amounts in the cell body and synaptic region of rods. The profile of UNC119a subcellular distribution remained largely unchanged under all tested conditions of illumination, and correlated with the profile of Gα(t1) following its light-dependent translocation. Quantification by Western blotting suggested that mouse retina contains ~17 pmol of UNC119a, giving a ~1 to 4 molar ratio of UNC119a to Gα(t1). Hence, light-translocated Gα(t1) can serve as a major partner of UNC119a. Supporting this role, the levels of UNC119a were downregulated by about 2-fold in mouse retina lacking Gα(t1). As a dominant partner, Gα(t1) may potentially modulate the function of other known UNC119a-interacting proteins involved in photoreceptor ciliary trafficking and synaptic regulation, in a light-dependent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Células Fotorreceptoras Retinianas Bastonetes/citologia , Transducina/deficiência , Transducina/genética , Transducina/metabolismo
15.
Exp Hematol ; 40(1): 22-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22019628

RESUMO

Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several hematological disorders, including myeloproliferative neoplasms. Effective Jak2 inhibitors can have significant therapeutic potential. Here, using structure-based virtual screening, we identified a benzothiophene-derived Jak2 inhibitor named A46. We hypothesized that this compound would inhibit Jak2-V617F-mediated pathologic cell growth. To test this, A46 was analyzed for its ability to inhibit recombinant Jak2 protein catalysis; suppress Jak2-mediated pathogenic cell growth in vitro; inhibit the aberrant ex vivo growth of Jak2-V617F-expressing primary human bone marrow cells; and inhibit Jak2-mediated pathogenesis in vivo. To this end, we found that A46 selectively inhibited Jak2-V617F protein when compared to wild-type Jak2 protein. The drug also selectively inhibited the proliferation of Jak2-V617F-expressing cells in both a time- and dose-dependent manner, and this correlated with decreased Jak2 and signal transducers and activators of transcription 5 phosphorylation within treated cells. The Jak2-V617F cell growth inhibition correlated with an induction of cell cycle arrest and promotion of apoptosis. A46 also inhibited the pathologic growth of primary Jak2-V617F-expressing bone marrow cells ex vivo. Lastly, using a mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. A46 significantly reduced the splenomegaly and megakaryocytic hyperplasia in the spleens of treated mice and the levels of interleukin-6 in the plasma. Collectively, our data demonstrate that the benzothiophene-based compound, A46, suppresses Jak2-mediated pathogenesis, thereby making it a potential candidate drug against Jak2-mediated disorders.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biocatálise , Células da Medula Óssea/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Transgênicos , Relação Estrutura-Atividade , Tiofenos/química , Células Tumorais Cultivadas
16.
Neoplasia ; 13(11): 1058-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22131881

RESUMO

We recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. We found that G6 provided therapeutic benefit to the peripheral blood as determined by elimination of leukocytosis, thrombocytosis, and erythrocytosis. G6 normalized the pathologically high plasma concentrations of interleukin 6 (IL-6). In the liver, G6 eliminated Jak2-V617F-driven extramedullary hematopoiesis. With respect to the spleen, G6 significantly reduced both the splenomegaly and megakaryocytic hyperplasia. In the critically important bone marrow, G6 normalized the pathologically high levels of phospho-Jak2 and phospho-signal transducer and activator of transcription 5 (STAT5). It significantly reduced the megakaryocytic hyperplasia in the marrow and completely normalized the M/E ratio. Most importantly, G6 selectively reduced the mutant Jak2 burden by 67%on average, with virtual elimination of mutant Jak2 cells in one third of all treated mice. Lastly, clonogenic assays using marrow stem cells from the myeloproliferative neoplasm mice revealed a time-dependent elimination of the clonogenic growth potential of these cells by G6. Collectively, these data indicate that G6 exhibits exceptional efficacy in the peripheral blood, liver, spleen, and, most importantly, in the bone marrow, thereby raising the possibility that this compound may alter the natural history of Jak2-V617F-mediated myeloproliferative neoplasia.


Assuntos
Neoplasias da Medula Óssea/tratamento farmacológico , Neoplasias da Medula Óssea/genética , Transformação Celular Neoplásica/genética , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Estilbenos/uso terapêutico , Substituição de Aminoácidos/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Neoplasias da Medula Óssea/patologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Janus Quinase 2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Fenilalanina/genética , Inibidores de Proteínas Quinases/farmacologia , Estilbenos/farmacologia , Valina/genética
17.
Biochemistry ; 50(36): 7774-86, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21823612

RESUMO

Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several human diseases including leukemia, lymphoma, myeloma, and the myeloproliferative neoplasms. Using structure-based virtual screening, we previously identified a novel Jak2 inhibitor named G6. We showed that G6 specifically inhibits Jak2 kinase activity and suppresses Jak2-mediated cellular proliferation. To elucidate the molecular and biochemical mechanisms by which G6 inhibits Jak2-mediated cellular proliferation, we treated Jak2-V617F expressing human erythroleukemia (HEL) cells for 12 h with either vehicle control or 25 µM of the drug and compared protein expression profiles using two-dimensional gel electrophoresis. One differentially expressed protein identified by electrospray mass spectroscopy was the intermediate filament protein, vimentin. It was present in DMSO treated cells but absent in G6 treated cells. HEL cells treated with G6 showed both time- and dose-dependent cleavage of vimentin as well as a marked reorganization of vimentin intermediate filaments within intact cells. In a mouse model of Jak2-V617F mediated human erythroleukemia, G6 also decreased the levels of vimentin protein, in vivo. The G6-induced cleavage of vimentin was found to be Jak2-dependent and calpain-mediated. Furthermore, we found that intracellular calcium mobilization is essential and sufficient for the cleavage of vimentin. Finally, we show that the cleavage of vimentin intermediate filaments, per se, is sufficient to reduce HEL cell viability. Collectively, these results suggest that G6-induced inhibition of Jak2-mediated pathogenic cell growth is concomitant with the disruption of intracellular vimentin filaments. As such, this work describes a novel pathway for the targeting of Jak2-mediated pathological cell growth.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Estilbenos/farmacologia , Vimentina/metabolismo , Animais , Calpaína/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Janus Quinase 2/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Espectrometria de Massas por Ionização por Electrospray , Vimentina/química
18.
J Biol Chem ; 286(6): 4280-91, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21127060

RESUMO

Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease.


Assuntos
Ciclo Celular/efeitos dos fármacos , Janus Quinase 2/metabolismo , Leucemia Eritroblástica Aguda/enzimologia , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Estilbenos/farmacologia , Substituição de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Janus Quinase 2/genética , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/genética , Camundongos , Camundongos Mutantes , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
J Biol Chem ; 285(41): 31399-407, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20667821

RESUMO

Somatic mutations in the Jak2 protein, such as V617F, cause aberrant Jak/STAT signaling and can lead to the development of myeloproliferative neoplasms. This discovery has led to the search for small molecule inhibitors that target Jak2. Using structure-based virtual screening, our group recently identified a novel small molecule inhibitor of Jak2 named G6. Here, we identified a structure-function correlation of this compound. Specifically, five derivative compounds of G6 having structural similarity to the original lead compound were obtained and analyzed for their ability to (i) inhibit Jak2-V617F-mediated cell growth, (ii) inhibit the levels of phospho-Jak2, phospho-STAT3, and phospho-STAT5; (iii) induce apoptosis in human erythroleukemia cells; and (iv) suppress pathologic cell growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Additionally, we computationally examined the interactions of these compounds with the ATP-binding pocket of the Jak2 kinase domain. We found that the stilbenoid core-containing derivatives of G6 significantly inhibited Jak2-V617F-mediated cell proliferation in a time- and dose-dependent manner. They also inhibited phosphorylation of Jak2, STAT3, and STAT5 proteins within cells, resulting in higher levels of apoptosis via the intrinsic apoptotic pathway. Finally, the stilbenoid derivatives inhibited the pathologic growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Collectively, our data demonstrate that G6 has a stilbenoid core that is indispensable for maintaining its Jak2 inhibitory potential.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Policitemia Vera/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Estilbenos/farmacologia , Substituição de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação de Sentido Incorreto , Policitemia Vera/enzimologia , Policitemia Vera/genética , Inibidores de Proteínas Quinases/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Estilbenos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA