Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 114(3): 633-643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218407

RESUMO

Live biotherapeutic products (LBPs) are human microbiome therapies showing promise in the clinic for a range of diseases and conditions. Describing the kinetics and behavior of LBPs poses a unique modeling challenge because, unlike traditional therapies, LBPs can expand, contract, and colonize the host digestive tract. Here, we present a novel cellular kinetic-pharmacodynamic quantitative systems pharmacology model of an LBP. The model describes bacterial growth and competition, vancomycin effects, binding and unbinding to the epithelial surface, and production and clearance of butyrate as a therapeutic metabolite. The model is calibrated and validated to published data from healthy volunteers. Using the model, we simulate the impact of treatment dose, frequency, and duration as well as vancomycin pretreatment on butyrate production. This model enables model-informed drug development and can be used for future microbiome therapies to inform decision making around antibiotic pretreatment, dose selection, loading dose, and dosing duration.


Assuntos
Microbiota , Vancomicina , Humanos , Cinética , Farmacologia em Rede , Desenvolvimento de Medicamentos
2.
APL Bioeng ; 4(4): 046107, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33376936

RESUMO

Natural killer (NK) cells are immune effector cells that can detect and lyse cancer cells. However, NK cell exhaustion, a phenotype characterized by reduced secretion of cytolytic models upon serial stimulation, limits the NK cell's ability to lyse cells. In this work, we investigated in silico strategies that counteract the NK cell's reduced secretion of cytolytic molecules. To accomplish this goal, we constructed a mathematical model that describes the dynamics of the cytolytic molecules granzyme B (GZMB) and perforin-1 (PRF1) and calibrated the model predictions to published experimental data using a Bayesian parameter estimation approach. We applied an information-theoretic approach to perform a global sensitivity analysis, from which we found that the suppression of phosphatase activity maximizes the secretion of GZMB and PRF1. However, simply reducing the phosphatase activity is shown to deplete the cell's intracellular pools of GZMB and PRF1. Thus, we added a synthetic Notch (synNotch) signaling circuit to our baseline model as a method for controlling the secretion of GZMB and PRF1 by inhibiting phosphatase activity and increasing production of GZMB and PRF1. We found that the optimal synNotch system depends on the frequency of NK cell stimulation. For only a few rounds of stimulation, the model predicts that inhibition of phosphatase activity leads to more secreted GZMB and PRF1; however, for many rounds of stimulation, the model reveals that increasing production of the cytolytic molecules is the optimal strategy. In total, we developed a mathematical framework that provides actionable insight into engineering robust NK cells for clinical applications.

3.
Integr Biol (Camb) ; 12(5): 109-121, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32409824

RESUMO

Natural killer (NK) cells are part of the innate immune system and are capable of killing diseased cells. As a result, NK cells are being used for adoptive cell therapies for cancer patients. The activation of NK cell stimulatory receptors leads to a cascade of intracellular phosphorylation reactions, which activates key signaling species that facilitate the secretion of cytolytic molecules required for cell killing. Strategies that maximize the activation of such intracellular species can increase the likelihood of NK cell killing upon contact with a cancer cell and thereby improve efficacy of NK cell-based therapies. However, due to the complexity of intracellular signaling, it is difficult to deduce a priori which strategies can enhance species activation. Therefore, we constructed a mechanistic model of the CD16, 2B4 and NKG2D signaling pathways in NK cells to simulate strategies that enhance signaling. The model predictions were fit to published data and validated with a separate dataset. Model simulations demonstrate strong network activation when the CD16 pathway is stimulated. The magnitude of species activation is most sensitive to the receptor's initial concentration and the rate at which the receptor is activated. Co-stimulation of CD16 and NKG2D in silico required fewer ligands to achieve half-maximal activation than other combinations, suggesting co-stimulating these pathways is most effective in activating the species. We applied the model to predict the effects of perturbing the signaling network and found two strategies that can potently enhance network activation. When the availability of ligands is low, it is more influential to engineer NK cell receptors that are resistant to proteolytic cleavage. In contrast, for high ligand concentrations, inhibiting phosphatase activity leads to sustained species activation. The work presented here establishes a framework for understanding the complex, nonlinear aspects of NK cell signaling and provides detailed strategies for enhancing NK cell activation.


Assuntos
Células Matadoras Naturais/metabolismo , Neoplasias/metabolismo , Calibragem , Proliferação de Células , Análise por Conglomerados , Simulação por Computador , Humanos , Ligantes , Modelos Teóricos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fosforilação , Análise de Componente Principal , Receptores de IgG/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
4.
Wiley Interdiscip Rev Syst Biol Med ; 12(4): e1484, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129950

RESUMO

Detailed, mechanistic models of immune cell behavior across multiple scales in the context of cancer provide clinically relevant insights needed to understand existing immunotherapies and develop more optimal treatment strategies. We highlight mechanistic models of immune cells and their ability to become activated and promote tumor cell killing. These models capture various aspects of immune cells: (a) single-cell behavior by predicting the dynamics of intracellular signaling networks in individual immune cells, (b) multicellular interactions between tumor and immune cells, and (c) multiscale dynamics across space and different levels of biological organization. Computational modeling is shown to provide detailed quantitative insight into immune cell behavior and immunotherapeutic strategies. However, there are gaps in the literature, and we suggest areas where additional modeling efforts should be focused to more prominently impact our understanding of the complexities of the immune system in the context of cancer. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Imunidade Adaptativa , Linfócitos B/imunologia , Linfócitos B/metabolismo , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA