Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 20(5)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37875104

RESUMO

Objective.The proliferation of multi-unit cortical recordings over the last two decades, especially in macaques and during motor-control tasks, has generated interest in neural 'population dynamics': the time evolution of neural activity across a group of neurons working together. A good model of these dynamics should be able to infer the activity of unobserved neurons within the same population and of the observed neurons at future times. Accordingly, Pandarinath and colleagues have introduced a benchmark to evaluate models on these two (and related) criteria: four data sets, each consisting of firing rates from a population of neurons, recorded from macaque cortex during movement-related tasks.Approach.Since this is a discriminative-learning task, we hypothesize that general-purpose architectures based on recurrent neural networks (RNNs) trained with masking can outperform more 'bespoke' models. To capture long-distance dependencies without sacrificing the autoregressive bias of recurrent networks, we also propose a novel, hybrid architecture ('TERN') that augments the RNN with self-attention, as in transformer networks.Main results.Our RNNs outperform all published models on all four data sets in the benchmark. The hybrid architecture improves performance further still. Pure transformer models fail to achieve this level of performance, either in our work or that of other groups.Significance.We argue that the autoregressive bias imposed by RNNs is critical for achieving the highest levels of performance, and establish the state of the art on the neural latents benchmark. We conclude, however, by proposing that the benchmark be augmented with an alternative evaluation of latent dynamics that favors generative over discriminative models like the ones we propose in this report.


Assuntos
Redes Neurais de Computação , Neurônios , Neurônios/fisiologia
2.
N Engl J Med ; 385(3): 217-227, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34260835

RESUMO

BACKGROUND: Technology to restore the ability to communicate in paralyzed persons who cannot speak has the potential to improve autonomy and quality of life. An approach that decodes words and sentences directly from the cerebral cortical activity of such patients may represent an advancement over existing methods for assisted communication. METHODS: We implanted a subdural, high-density, multielectrode array over the area of the sensorimotor cortex that controls speech in a person with anarthria (the loss of the ability to articulate speech) and spastic quadriparesis caused by a brain-stem stroke. Over the course of 48 sessions, we recorded 22 hours of cortical activity while the participant attempted to say individual words from a vocabulary set of 50 words. We used deep-learning algorithms to create computational models for the detection and classification of words from patterns in the recorded cortical activity. We applied these computational models, as well as a natural-language model that yielded next-word probabilities given the preceding words in a sequence, to decode full sentences as the participant attempted to say them. RESULTS: We decoded sentences from the participant's cortical activity in real time at a median rate of 15.2 words per minute, with a median word error rate of 25.6%. In post hoc analyses, we detected 98% of the attempts by the participant to produce individual words, and we classified words with 47.1% accuracy using cortical signals that were stable throughout the 81-week study period. CONCLUSIONS: In a person with anarthria and spastic quadriparesis caused by a brain-stem stroke, words and sentences were decoded directly from cortical activity during attempted speech with the use of deep-learning models and a natural-language model. (Funded by Facebook and others; ClinicalTrials.gov number, NCT03698149.).


Assuntos
Infartos do Tronco Encefálico/complicações , Interfaces Cérebro-Computador , Aprendizado Profundo , Disartria/reabilitação , Próteses Neurais , Fala , Adulto , Disartria/etiologia , Eletrocorticografia , Eletrodos Implantados , Humanos , Masculino , Processamento de Linguagem Natural , Quadriplegia/etiologia , Córtex Sensório-Motor/fisiologia
3.
Nat Neurosci ; 23(4): 575-582, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231340

RESUMO

A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurrent neural network to encode each sentence-length sequence of neural activity into an abstract representation, and then to decode this representation, word by word, into an English sentence. For each participant, data consist of several spoken repeats of a set of 30-50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. Finally, we show how decoding with limited data can be improved with transfer learning, by training certain layers of the network under multiple participants' data.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Redes Neurais de Computação , Percepção da Fala , Fala , Adulto , Eletrocorticografia , Feminino , Humanos , Pessoa de Meia-Idade
4.
Nat Commun ; 10(1): 3096, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363096

RESUMO

Natural communication often occurs in dialogue, differentially engaging auditory and sensorimotor brain regions during listening and speaking. However, previous attempts to decode speech directly from the human brain typically consider listening or speaking tasks in isolation. Here, human participants listened to questions and responded aloud with answers while we used high-density electrocorticography (ECoG) recordings to detect when they heard or said an utterance and to then decode the utterance's identity. Because certain answers were only plausible responses to certain questions, we could dynamically update the prior probabilities of each answer using the decoded question likelihoods as context. We decode produced and perceived utterances with accuracy rates as high as 61% and 76%, respectively (chance is 7% and 20%). Contextual integration of decoded question likelihoods significantly improves answer decoding. These results demonstrate real-time decoding of speech in an interactive, conversational setting, which has important implications for patients who are unable to communicate.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Fala/fisiologia , Interfaces Cérebro-Computador , Eletrocorticografia/instrumentação , Eletrocorticografia/métodos , Eletrodos Implantados , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Feminino , Humanos , Fatores de Tempo
5.
J Neural Eng ; 15(2): 026010, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29192609

RESUMO

OBJECTIVE: The aim of this work is to improve the state of the art for motor-control with a brain-machine interface (BMI). BMIs use neurological recording devices and decoding algorithms to transform brain activity directly into real-time control of a machine, archetypically a robotic arm or a cursor. The standard procedure treats neural activity-vectors of spike counts in small temporal windows-as noisy observations of the kinematic state (position, velocity, acceleration) of the fingertip. Inferring the state from the observations then takes the form of a dynamical filter, typically some variant on Kalman's (KF). The KF, however, although fairly robust in practice, is optimal only when the relationships between variables are linear and the noise is Gaussian, conditions usually violated in practice. APPROACH: To overcome these limitations we introduce a new filter, the 'recurrent exponential-family harmonium' (rEFH), that models the spike counts explicitly as Poisson-distributed, and allows for arbitrary nonlinear dynamics and observation models. Furthermore, the model underlying the filter is acquired through unsupervised learning, which allows temporal correlations in spike counts to be explained by latent dynamics that do not necessarily correspond to the kinematic state of the fingertip. MAIN RESULTS: We test the rEFH on offline reconstruction of the kinematics of reaches in the plane. The rEFH outperforms the standard, as well as three other state-of-the-art, decoders, across three monkeys, two different tasks, most kinematic variables, and a range of bin widths, amounts of training data, and numbers of neurons. SIGNIFICANCE: Our algorithm establishes a new state of the art for offline decoding of reaches-in particular, for fingertip velocities, the variable used for control in most online decoders.


Assuntos
Algoritmos , Braço/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Aprendizado de Máquina não Supervisionado , Animais , Eletrodos Implantados , Macaca mulatta , Masculino
6.
PLoS Comput Biol ; 11(11): e1004554, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26540152

RESUMO

Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Neurológicos , Modelos Estatísticos , Redes Neurais de Computação , Simulação por Computador , Humanos , Propriocepção/fisiologia
7.
J Bioinform Comput Biol ; 11(5): 1342004, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24131053

RESUMO

The process of human blood clotting involves a complex interaction of continuous-time/continuous-state processes and discrete-event/discrete-state phenomena, where the former comprise the various chemical rate equations and the latter comprise both threshold-limited behaviors and binary states (presence/absence of a chemical). Whereas previous blood-clotting models used only continuous dynamics and perforce addressed only portions of the coagulation cascade, we capture both continuous and discrete aspects by modeling it as a hybrid dynamical system. The model was implemented as a hybrid Petri net, a graphical modeling language that extends ordinary Petri nets to cover continuous quantities and continuous-time flows. The primary focus is simulation: (1) fidelity to the clinical data in terms of clotting-factor concentrations and elapsed time; (2) reproduction of known clotting pathologies; and (3) fine-grained predictions which may be used to refine clinical understanding of blood clotting. Next we examine sensitivity to rate-constant perturbation. Finally, we propose a method for titrating between reliance on the model and on prior clinical knowledge. For simplicity, we confine these last two analyses to a critical purely-continuous subsystem of the model.


Assuntos
Coagulação Sanguínea/fisiologia , Modelos Biológicos , Resistência à Proteína C Ativada/sangue , Algoritmos , Fatores de Coagulação Sanguínea/metabolismo , Biologia Computacional , Simulação por Computador , Fibrina/metabolismo , Hemofilia A/sangue , Humanos , Cinética , Modelos Estatísticos , Ligação Proteica , Tempo de Protrombina , Biologia de Sistemas , Trombina/metabolismo
8.
PLoS Comput Biol ; 9(4): e1003035, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637588

RESUMO

Sensory processing in the brain includes three key operations: multisensory integration-the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations-the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned-but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations.


Assuntos
Aprendizagem , Algoritmos , Animais , Encéfalo/fisiologia , Sinais (Psicologia) , Humanos , Modelos Neurológicos , Distribuição Normal , Estimulação Luminosa , Distribuição de Poisson , Probabilidade , Sensação , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA