Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37285376

RESUMO

Intensifying macrovertebrate reconnaissance together with refined age-dating of mid-Cretaceous assemblages in recent decades is producing a more nuanced understanding of the impact of the Cretaceous Thermal Maximum on terrestrial ecosystems. Here we report discovery of a new early-diverging ornithopod, Iani smithi gen. et sp. nov., from the Cenomanian-age lower Mussentuchit Member, Cedar Mountain Formation of Utah, USA. The single known specimen of this species (NCSM 29373) includes a well-preserved, disarticulated skull, partial axial column, and portions of the appendicular skeleton. Apomorphic traits are concentrated on the frontal, squamosal, braincase, and premaxilla, including the presence of three premaxillary teeth. Phylogenetic analyses using parsimony and Bayesian inference posit Iani as a North American rhabdodontomorph based on the presence of enlarged, spatulate teeth bearing up to 12 secondary ridges, maxillary teeth lacking a primary ridge, a laterally depressed maxillary process of the jugal, and a posttemporal foramen restricted to the squamosal, among other features. Prior to this discovery, neornithischian paleobiodiversity in the Mussentuchit Member was based primarily on isolated teeth, with only the hadrosauroid Eolambia caroljonesa named from macrovertebrate remains. Documentation of a possible rhabdodontomorph in this assemblage, along with published reports of an as-of-yet undescribed thescelosaurid, and fragmentary remains of ankylosaurians and ceratopsians confirms a minimum of five, cohabiting neornithischian clades in earliest Late Cretaceous terrestrial ecosystems of North America. Due to poor preservation and exploration of Turonian-Santonian assemblages, the timing of rhabdodontomorph extirpation in the Western Interior Basin is, as of yet, unclear. However, Iani documents survival of all three major clades of Early Cretaceous neornithischians (Thescelosauridae, Rhabdodontomorpha, and Ankylopollexia) into the dawn of the Late Cretaceous of North America.


Assuntos
Dinossauros , Fósseis , Animais , Filogenia , Teorema de Bayes , Ecossistema , Crânio/anatomia & histologia , América do Norte , Dinossauros/anatomia & histologia , Bochecha
2.
Curr Biol ; 32(14): 3195-3202.e5, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35803271

RESUMO

Giant carnivorous dinosaurs such as Tyrannosaurus rex and abelisaurids are characterized by highly reduced forelimbs that stand in contrast to their huge dimensions, massive skulls, and obligate bipedalism.1,2 Another group that follows this pattern, yet is still poorly known, is the Carcharodontosauridae: dominant predators that inhabited most continents during the Early Cretaceous3-5 and reached their largest sizes in Aptian-Cenomanian times.6-10 Despite many discoveries over the last three decades, aspects of their anatomy, especially with regard to the skull, forearm, and feet, remain poorly known. Here we report a new carcharodontosaurid, Meraxes gigas, gen. et sp. nov., based on a specimen recovered from the Upper Cretaceous Huincul Formation of northern Patagonia, Argentina. Phylogenetic analysis places Meraxes among derived Carcharodontosauridae, in a clade with other massive South American species. Meraxes preserves novel anatomical information for derived carcharodontosaurids, including an almost complete forelimb that provides evidence for convergent allometric trends in forelimb reduction among three lineages of large-bodied, megapredatory non-avian theropods, including a remarkable degree of parallelism between the latest-diverging tyrannosaurids and carcharodontosaurids. This trend, coupled with a likely lower bound on forelimb reduction, hypothesized to be about 0.4 forelimb/femur length, combined to produce this short-armed pattern in theropods. The almost complete cranium of Meraxes permits new estimates of skull length in Giganotosaurus, which is among the longest for theropods. Meraxes also provides further evidence that carchardontosaurids reached peak diversity shortly before their extinction with high rates of trait evolution in facial ornamentation possibly linked to a social signaling role.


Assuntos
Dinossauros , Animais , Braço/anatomia & histologia , Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Filogenia , Crânio/anatomia & histologia
3.
Biol Lett ; 17(11): 20210383, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755552

RESUMO

Osteohistological data are commonly used to study the life history of extant and extinct tetrapods. While recent advances have permitted detailed reconstructions of growth patterns, physiology and other features using these data, they are most commonly used in assessments of ontogenetic stage and relative growth in extinct animals. These methods have seen widespread adoption in recent years, rapidly becoming a common component of the taxonomic description of new fossil taxa, but are often applied without close consideration of the sources of variation present or the dimensional scaling relationships that exist among different osteohistological measurements. Here, we use a combination of theoretical models and empirical data from a range of extant and extinct tetrapods to review sources of variability in common osteohistological measurements, their dimensional scaling relationships and the resulting interpretations that can be made from those data. In particular, we provide recommendations on the usage and interpretation of growth mark spacing/zonal thickness data, when these are likely to be unreliable, and under what conditions they can provide useful inferences for studies of growth and life history.


Assuntos
Fósseis , Animais
4.
Proc Biol Sci ; 287(1939): 20202258, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234083

RESUMO

The independent evolution of gigantism among dinosaurs has been a topic of long-standing interest, but it remains unclear if gigantic theropods, the largest bipeds in the fossil record, all achieved massive sizes in the same manner, or through different strategies. We perform multi-element histological analyses on a phylogenetically broad dataset sampled from eight theropod families, with a focus on gigantic tyrannosaurids and carcharodontosaurids, to reconstruct the growth strategies of these lineages and test if particular bones consistently preserve the most complete growth record. We find that in skeletally mature gigantic theropods, weight-bearing bones consistently preserve extensive growth records, whereas non-weight-bearing bones are remodelled and less useful for growth reconstruction, contrary to the pattern observed in smaller theropods and some other dinosaur clades. We find a heterochronic pattern of growth fitting an acceleration model in tyrannosaurids, with allosauroid carcharodontosaurids better fitting a model of hypermorphosis. These divergent growth patterns appear phylogenetically constrained, representing extreme versions of the growth patterns present in smaller coelurosaurs and allosauroids, respectively. This provides the first evidence of a lack of strong mechanistic or physiological constraints on size evolution in the largest bipeds in the fossil record and evidence of one of the longest-living individual dinosaurs ever documented.


Assuntos
Evolução Biológica , Tamanho Corporal , Dinossauros , Animais , Osso e Ossos/fisiologia , Fósseis , Filogenia
5.
Curr Biol ; 30(13): R778-R780, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32634422

RESUMO

A groundbreaking study of brain evolution across birds and dinosaurs reveals potential drivers of increased brain size including biogeography and ecology. The most dramatic change occurred in the Neoaves after the Cretaceous-Paleogene extinction rather than earlier in bird evolution.


Assuntos
Dinossauros , Fósseis , Animais , Evolução Biológica , Aves , Encéfalo , Dinossauros/anatomia & histologia , Tamanho do Órgão , Filogenia
6.
Ecol Evol ; 10(13): 6288-6309, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724514

RESUMO

The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as Triceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early-diverging taxa is required to test this further.

7.
Commun Biol ; 2: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820466

RESUMO

To date, eco-evolutionary dynamics in the ascent of tyrannosauroids to top predator roles have been obscured by a 70-million-year gap in the North American (NA) record. Here we report discovery of the oldest Cretaceous NA tyrannosauroid, extending the lineage by ~15 million years. The new taxon-Moros intrepidus gen. et sp. nov.-is represented by a hind limb from an individual nearing skeletal maturity at 6-7 years. With a ~1.2-m limb length and 78-kg mass, M. intrepidus ranks among the smallest Cretaceous tyrannosauroids, restricting the window for rapid mass increases preceding the appearance of colossal eutyrannosaurs. Phylogenetic affinity with Asian taxa supports transcontinental interchange as the means by which iconic biotas of the terminal Cretaceous were established in NA. The unexpectedly diminutive and highly cursorial bauplan of NA's earliest Cretaceous tyrannosauroids reveals an evolutionary strategy reliant on speed and small size during their prolonged stint as marginal predators.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Registros/estatística & dados numéricos , Animais , Biota , Dinossauros/classificação , Membro Posterior/anatomia & histologia , Humanos , América do Norte , Paleontologia , Fatores de Tempo
8.
PeerJ ; 6: e5883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479889

RESUMO

The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Member. To better refine taxonomic identifications of isolated theropod dinosaur teeth, we used quantitative analyses of taxonomically comprehensive databases of theropod tooth measurements, adding new data on theropod tooth morphodiversity in this poorly understood interval. We further provide the first descriptions of tyrannosauroid premaxillary teeth and document the earliest North American record of adocid remains, extending the appearance of this ancestrally Asian clade by 5 million years in western North America and supporting studies of pre-Cenomaninan Laurasian faunal exchange across Beringia. The overabundance of mesoeucrocodylian remains at the COI locality produces a comparatively low measure of relative biodiversity when compared to other microvertebrate sites in the Mussentuchit Member using both raw and subsampling methods. Much more microvertebrate research is necessary to understand the roles of changing ecology and taphonomy that may be linked to transgression of the Western Interior Seaway or microhabitat variation.

9.
Sci Rep ; 8(1): 5870, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651146

RESUMO

The dental morphology and tooth replacement pattern of Liaoceratops yanzigouensis, the earliest known neoceratopsian, are important for our understanding of the evolution of the ceratopsian dental system. Here we describe the dental morphology and tooth replacement of Liaoceratops yanzigouensis based on high-resolution computed tomographic (CT) scan data of three specimens including the holotype, the first study for basal ceratopsian. The three-dimensional reconstructions reveal some important new information, including: three teeth in the premaxilla in one side, two more teeth in the dentary than in the maxilla, incipiently developed mesial grooves on some crowns, two generations of replacement teeth within some tooth families; and most functional teeth were under heavy resorption by the replacement process, but still remained functional. Comparisons of tooth pair positions from opposite sides in the four jaw quadrants of three specimens revealed a degree of bilateral symmetry in replacement pattern. Reconstruction of Zahnreihen yields an avergae z-spacing of 2.58 with simultaneous front-to-back tooth replacement. Our study presents the earliest evidence of derived neoceratopsian traits of the complex dental batteries in ceratopsids. Most significantly, our models reveal the tracts of partially resorbed functional teeth which appears to track the growth of the jaws, traits previously undocumented in Ceratopsia.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Maxila/anatomia & histologia , Dente/anatomia & histologia , Animais , Dinossauros/anatomia & histologia , Fósseis/diagnóstico por imagem , Herbivoria/fisiologia , Maxila/diagnóstico por imagem , Maxila/crescimento & desenvolvimento , Odontogênese/genética , Paleontologia , Tomografia Computadorizada de Emissão , Dente/diagnóstico por imagem , Dente/crescimento & desenvolvimento , Reimplante Dentário
10.
PeerJ ; 6: e4558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607264

RESUMO

Here we provide a detailed description of the postcranial skeleton of the holotype and referred specimens of Buitreraptor gonzalezorum. This taxon was recovered as an unenlagiine dromaeosaurid in several recent phylogenetic studies and is the best represented Gondwanan dromaeosaurid discovered to date. It was preliminarily described in a brief article, but a detailed account of its osteology is emerging in recent works. The holotype is the most complete specimen yet found, so an exhaustive description of it provides much valuable anatomical information. The holotype and referred specimens preserve the axial skeleton, pectoral and pelvic girdles, and both fore- and hindlimbs. Diagnostic postcranial characters of this taxon include: anterior cervical centra exceeding the posterior limit of neural arch; eighth and ninth cervical vertebral centra with lateroventral tubercles; pneumatic foramina only in anteriormost dorsals; middle and posterior caudal centra with a complex of shallow ridges on lateral surfaces; pneumatic furcula with two pneumatic foramina on the ventral surface; scapular blade transversely expanded at mid-length; well-projected flexor process on distal end of the humerus; dorsal rim of the ilium laterally everted; and concave dorsal rim of the postacetabular iliac blade. A paleohistological study of limb bones shows that the holotype represents an earlier ontogenetic stage than one of the referred specimens (MPCA 238), which correlates with the fusion of the last sacral vertebra to the rest of the sacrum in MPCA 238. A revised phylogenetic analysis recovered Buitreraptor as an unenlagiine dromaeosaurid, in agreement with previous works. The phylogenetic implications of the unenlagiine synapomorphies and other characters, such as the specialized pedal digit II and the distal ginglymus on metatarsal II, are discussed within the evolutionary framework of Paraves.

11.
PLoS One ; 12(5): e0176896, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489871

RESUMO

BACKGROUND: Eolambia caroljonesa is the most abundant dinosaur in the lower Cenomanian Mussentuchit Member of the Cedar Mountain Formation of Utah, and one of the most completely known non-hadrosaurid iguanodontians from North America. In addition to the large holotype and paratype partial skulls, copious remains of skeletally immature individuals, including three bonebeds, have been referred to E. caroljonesa. Nevertheless, aspects of the postcranial anatomy of this taxon, particularly the pelvic girdle, have remained ambiguous due to the lack of associated postcranial material of larger, more mature individuals. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a recently discovered associated partial postcranial skeleton of a large Eolambia caroljonesa. This specimen, FMNH PR 3847, provides new anatomical data regarding the vertebral column and pelvic girdle, supplementing previous diagnoses and descriptions of E. caroljonesa. A new phylogenetic analysis incorporating information from FMNH PR 3847 places E. caroljonesa as a basal hadrosauromorph closely related to Protohadros byrdi from the Cenomanian Woodbine Formation of Texas. Histological analysis of FMNH PR 3847 reveals that it represents a subadult individual eight to nine years of age. Taphonomic analysis indicates that FMNH PR 3847 was preserved in a crevasse splay deposit, along with an unusual abundance of small crocodylomorph material. CONCLUSIONS/SIGNIFICANCE: FMNH PR 3847 provides a wealth of new morphological data, adding to the anatomical and systematic characterization of Eolambia caroljonesa, and histological data, revealing new information on growth history in a basal hadrosauromorph. Taphonomic characterization of FMNH PR 3847 and associated vertebrate material will allow comparison with other vertebrate localities in the Mussentuchit Member of the Cedar Mountain Formation.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Ossos Pélvicos/anatomia & histologia , Filogenia , Coluna Vertebral/anatomia & histologia , Animais , Dinossauros/classificação , Utah
12.
PLoS One ; 11(7): e0157793, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27410683

RESUMO

BACKGROUND: Late Cretaceous terrestrial strata of the Neuquén Basin, northern Patagonia, Argentina have yielded a rich fauna of dinosaurs and other vertebrates. The diversity of saurischian dinosaurs is particularly high, especially in the late Cenomanian-early Turonian Huincul Formation, which has yielded specimens of rebacchisaurid and titanosaurian sauropods, and abelisaurid and carcharodontosaurid theropods. Continued sampling is adding to the known vertebrate diversity of this unit. METHODOLOGY/ PRINCIPAL FINDINGS: A new, partially articulated mid-sized theropod was found in rocks from the Huincul Formation. It exhibits a unique combination of traits that distinguish it from other known theropods justifying erection of a new taxon, Gualicho shinyae gen. et sp. nov. Gualicho possesses a didactyl manus with the third digit reduced to a metacarpal splint reminiscent of tyrannosaurids, but both phylogenetic and multivariate analyses indicate that didactyly is convergent in these groups. Derived characters of the scapula, femur, and fibula supports the new theropod as the sister taxon of the nearly coeval African theropod Deltadromeus and as a neovenatorid carcharodontosaurian. A number of these features are independently present in ceratosaurs, and Gualicho exhibits an unusual mosaic of ceratosaurian and tetanuran synapomorphies distributed throughout the skeleton. CONCLUSIONS/ SIGNIFICANCE: Gualicho shinyae gen. et sp. nov. increases the known theropod diversity of the Huincul Formation and also represents the first likely neovenatorid from this unit. It is the most basal tetatanuran to exhibit common patterns of digit III reduction that evolved independently in a number of other tetanuran lineages. A close relationship with Deltadromaeus from the Kem Kem beds of Niger adds to the already considerable biogeographic similarity between the Huincul Formation and coeval rock units in North Africa.


Assuntos
Dinossauros/anatomia & histologia , Animais , Argentina , Tamanho Corporal , Dinossauros/classificação , Membro Anterior/anatomia & histologia , Fósseis/anatomia & histologia , Modelos Anatômicos , Análise Multivariada , Paleontologia , Filogenia , Coluna Vertebral/anatomia & histologia
14.
PLoS One ; 10(12): e0144148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26701114

RESUMO

The partial skeleton of a leptoceratopsid dinosaur, Ischioceratops zhuchengensis gen. et sp. nov., was excavated from the bone-beds of the Upper Cretaceous Wangshi Group of Zhucheng, Shandong Province, China. This fossil represents the second leptoceratopsid dinosaur specimen recovered from the Kugou locality, a highly productive site in Zhucheng. The ischium of the new taxon is morphologically unique among known Dinosauria, flaring gradually to form an obturator process in its middle portion and resembling the shaft of a recurve bow. An elliptical fenestra perforates the obturator process, and the distal end of the shaft forms an axehead-shaped expansion. The discovery of Ischioceratops increases the known taxonomic diversity and morphological disparity of the Leptoceratopsidae.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Ísquio/anatomia & histologia , Animais , Biodiversidade , China , Dinossauros/classificação , Filogenia , Coluna Vertebral/anatomia & histologia
16.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24870044

RESUMO

Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (=pygostylians) from the Jehol Biota (≈125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Osso e Ossos/anatomia & histologia , Ecossistema , Comportamento Alimentar
17.
Nat Commun ; 4: 2827, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24264527

RESUMO

Allosauroid theropods were a diverse and widespread radiation of Jurassic-Cretaceous megapredators. Achieving some of the largest body sizes among theropod dinosaurs, these colossal hunters dominated terrestrial ecosystems until a faunal turnover redefined apex predator guild occupancy during the final 20 million years of the Cretaceous. Here we describe a giant new species of allosauroid--Siats meekerorum gen. et sp. nov.--providing the first evidence for the cosmopolitan clade Neovenatoridae in North America. Siats is the youngest allosauroid yet discovered from the continent and demonstrates that the clade endured there into the Late Cretaceous. The discovery provides new evidence for ecologic sympatry of large allosauroids and small-bodied tyrannosauroids. These data support the hypothesis that extinction of Allosauroidea in terrestrial ecosystems of North America permitted ecological release of tyrannosauroids, which went on to dominate end-Cretaceous food webs.


Assuntos
Dinossauros , Cadeia Alimentar , Fósseis , Paleontologia , Animais , América do Norte , Filogenia , Comportamento Predatório
18.
Proc Biol Sci ; 280(1751): 20122526, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23193135

RESUMO

The correlation between large body size and digestive efficiency has been hypothesized to have driven trends of increasing mass in herbivorous clades by means of directional selection. Yet, to date, few studies have investigated this relationship from a phylogenetic perspective, and none, to our knowledge, with regard to trophic shifts. Here, we reconstruct body mass in the three major subclades of non-avian theropod dinosaurs whose ecomorphology is correlated with extrinsic evidence of at least facultative herbivory in the fossil record--all of which also achieve relative gigantism (more than 3000 kg). Ordinary least-squares regressions on natural log-transformed mean mass recover significant correlations between increasing mass and geological time. However, tests for directional evolution in body mass find no support for a phylogenetic trend, instead favouring passive models of trait evolution. Cross-correlation of sympatric taxa from five localities in Asia reveals that environmental influences such as differential habitat sampling and/or taphonomic filtering affect the preserved record of dinosaurian body mass in the Cretaceous. Our results are congruent with studies documenting that behavioural and/or ecological factors may mitigate the benefit of increasing mass in extant taxa, and suggest that the hypothesis can be extrapolated to herbivorous lineages across geological time scales.


Assuntos
Evolução Biológica , Peso Corporal/fisiologia , Dinossauros/fisiologia , Fósseis , Herbivoria , Filogenia , Animais , Ásia , Dinossauros/anatomia & histologia , Análise dos Mínimos Quadrados , Funções Verossimilhança , Especificidade da Espécie
19.
J Morphol ; 273(10): 1111-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22806827

RESUMO

The ontogenetic allometry of long bone proportions is poorly understood in Mammalia. It has previously been suggested that during mammalian ontogeny long bone proportions grow more slender (positive allometry; length ∝ circumference(>1.0) ), although this conclusion was based upon data from a few small-bodied taxa. It remains unknown how ontogenetic long bone allometry varies across Mammalia in terms of both taxonomy and body size. We collected long bone length and circumference data for ontogenetic samples of 22 species of mammals spanning six major clades and three orders of magnitude in body mass. Using reduced major axis bivariate regressions to compare bone length to circumference, we found that isometry and positive allometry are the most widespread patterns of growth across mammals. Negative allometry (i.e., bones growing more robust during ontogeny) occurs in mammals but is largely restricted to cetartiodactyls. Using regression slope as a proxy for long bone allometry, we compared long bone allometry to life history and organismal traits. Neonatal body mass, adult body mass, and growth rate have a negative relationship with long bone allometry. At an adult mass of roughly 15-20 kg, long bone growth shifts from positive allometry to mainly isometry and negative allometry. There were no significant relationships between ontogenetic long bone allometry and either cursoriality or basal metabolic rate.


Assuntos
Desenvolvimento Ósseo/fisiologia , Mamíferos/crescimento & desenvolvimento , Animais , Metabolismo Basal , Tamanho Corporal , Osso e Ossos , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA